
Pruning Function for pruning based on a fraction and/or a difference from the control arm
Source:R/pruning_functions.R
bspt_pruner.Rd
This is a pruning constructor function which identifies records to be pruned based on the the fraction from the percentages. In addition to just looking at a fraction within an arm this function also allows further flexibility to also prune based on a comparison versus the control arm.
Usage
bspt_pruner(
fraction = 0.05,
keeprowtext = "Analysis set: Safety",
reg_expr = FALSE,
control = NULL,
diff_from_control = NULL,
only_more_often = TRUE,
cols = c("TRT01A")
)
Arguments
- fraction
fraction threshold. Function will keep all records strictly greater than this threshold.
- keeprowtext
Row to be excluded from pruning.
- reg_expr
Apply keeprowtext as a regular expression (grepl with fixed = TRUE)
- control
Control Group
- diff_from_control
Difference from control threshold.
- only_more_often
TRUE: Only consider when column pct is more often than control. FALSE: Also select a row where column pct is less often than control and abs(diff) above threshold
- cols
column path.
Examples
ADSL <- data.frame(
USUBJID = c(
"XXXXX01", "XXXXX02", "XXXXX03", "XXXXX04", "XXXXX05",
"XXXXX06", "XXXXX07", "XXXXX08", "XXXXX09", "XXXXX10"
),
TRT01P = c(
"ARMA", "ARMB", "ARMA", "ARMB", "ARMB",
"Placebo", "Placebo", "Placebo", "ARMA", "ARMB"
),
FASFL = c("Y", "Y", "Y", "Y", "N", "Y", "Y", "Y", "Y", "Y"),
SAFFL = c("N", "N", "N", "N", "N", "N", "N", "N", "N", "N"),
PKFL = c("N", "N", "N", "N", "N", "N", "N", "N", "N", "N")
)
ADSL <- ADSL |>
dplyr::mutate(TRT01P = as.factor(TRT01P)) |>
dplyr::mutate(SAFFL = factor(SAFFL, c("Y", "N"))) |>
dplyr::mutate(PKFL = factor(PKFL, c("Y", "N")))
lyt <- basic_table() |>
split_cols_by("TRT01P") |>
add_overall_col("Total") |>
split_rows_by(
"FASFL",
split_fun = drop_and_remove_levels("N"),
child_labels = "hidden"
) |>
analyze("FASFL",
var_labels = "Analysis set:",
afun = a_freq_j,
show_labels = "visible",
extra_args = list(label = "Full", .stats = "count_unique_fraction")
) |>
split_rows_by(
"SAFFL",
split_fun = remove_split_levels("N"),
child_labels = "hidden"
) |>
analyze("SAFFL",
var_labels = "Analysis set:",
afun = a_freq_j,
show_labels = "visible",
extra_args = list(label = "Safety", .stats = "count_unique_fraction")
) |>
split_rows_by(
"PKFL",
split_fun = remove_split_levels("N"),
child_labels = "hidden"
) |>
analyze("PKFL",
var_labels = "Analysis set:",
afun = a_freq_j,
show_labels = "visible",
extra_args = list(label = "PK", .stats = "count_unique_fraction")
)
result <- build_table(lyt, ADSL)
result
#> ARMA ARMB Placebo Total
#> ———————————————————————————————————————————————————————————————
#> Analysis set:
#> Full 3 (100.0%) 3 (75.0%) 3 (100.0%) 9 (90.0%)
#> Analysis set:
#> Safety 0 0 0 0
#> Analysis set:
#> PK 0 0 0 0
result <- prune_table(
result,
prune_func = bspt_pruner(
fraction = 0.05,
keeprowtext = "Safety",
cols = c("Total")
)
)
result
#> ARMA ARMB Placebo Total
#> ———————————————————————————————————————————————————————————————
#> Analysis set:
#> Full 3 (100.0%) 3 (75.0%) 3 (100.0%) 9 (90.0%)
#> Analysis set:
#> Safety 0 0 0 0