`r lifecycle::badge('stable')`
Functions to calculate odds ratios in [s_odds_ratio_j()].
Usage
or_glm(data, conf_level)
or_clogit(data, conf_level, method = "exact")
or_cmh(data, conf_level)
Arguments
- data
(`data.frame`)
data frame containing at least the variables `rsp` and `grp`, and optionally `strata` for [or_clogit()]. # New: pval here- conf_level
(`numeric`)
confidence level for the confidence interval.- method
(`string`)
whether to use the correct (`'exact'`) calculation in the conditional likelihood or one of the approximations, or the CMH method. See [survival::clogit()] for details.
Functions
or_glm()
: Estimates the odds ratio based on [stats::glm()]. Note that there must be exactly 2 groups in `data` as specified by the `grp` variable.or_clogit()
: Estimates the odds ratio based on [survival::clogit()]. This is done for the whole data set including all groups, since the results are not the same as when doing pairwise comparisons between the groups.or_cmh()
: Estimates the odds ratio based on CMH. Note that there must be exactly 2 groups in `data` as specified by the `grp` variable.
Examples
# Data with 2 groups.
data <- data.frame(
rsp = as.logical(c(1, 1, 0, 1, 0, 0, 1, 1)),
grp = letters[c(1, 1, 1, 2, 2, 2, 1, 2)],
strata = letters[c(1, 2, 1, 2, 2, 2, 1, 2)],
stringsAsFactors = TRUE
)
# Odds ratio based on glm.
or_glm(data, conf_level = 0.95)
#> $or_ci
#> est lcl ucl
#> 0.33333333 0.01669735 6.65441589
#>
#> $n_tot
#> n_tot
#> 8
#>
#> $pval
#> [1] 0.472011
#>
# Data with 3 groups.
data <- data.frame(
rsp = as.logical(c(1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0)),
grp = letters[c(1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3)],
strata = LETTERS[c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)],
stringsAsFactors = TRUE
)
# Odds ratio based on stratified estimation by conditional logistic regression.
or_clogit(data, conf_level = 0.95)
#> $or_ci_pvals
#> $or_ci_pvals$b
#> est lcl ucl pval
#> 0.28814553 0.02981009 2.78522598 0.28237516
#>
#> $or_ci_pvals$c
#> est lcl ucl pval
#> 0.5367919 0.0673365 4.2791881 0.5569374
#>
#>
#> $n_tot
#> n_tot
#> 20
#>
# Data with 2 groups.
set.seed(123)
data <- data.frame(
rsp = as.logical(rbinom(n = 40, size = 1, prob = 0.5)),
grp = letters[sample(1:2, size = 40, replace = TRUE)],
strata = LETTERS[sample(1:2, size = 40, replace = TRUE)],
stringsAsFactors = TRUE
)
# Odds ratio based on CMH.
or_cmh(data, conf_level = 0.95)
#> $or_ci
#> est lcl ucl
#> 0.9969199 0.2877116 3.4543244
#>
#> $n_tot
#> n_tot
#> 40
#>
#> $pval
#> [1] 0.9960178
#>