The analysis function a_relative_risk()
is used to create a layout element
to estimate the relative risk for response within a studied population. Only
the CMH method is available currently.
The primary analysis variable, vars
, is a logical variable indicating
whether a response has occurred for each record.
A stratification variable must be supplied via the
strata
element of the variables
argument.
Usage
a_relative_risk(
df,
.var,
ref_path,
.spl_context,
...,
.stats = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
s_relative_risk(
df,
.var,
.ref_group,
.in_ref_col,
variables = list(strata = NULL),
conf_level = 0.95,
method = "cmh",
weights_method = "cmh"
)
Arguments
- df
(
data.frame
)
input data frame.- .var
(
string
)
name of the response variable.- ref_path
(
character
)
path to the reference group.- .spl_context
(
environment
)
split context environment.- ...
Additional arguments passed to the statistics function.
- .stats
(
character
)
statistics to calculate.- .formats
(
list
)
formats for the statistics.- .labels
(
list
)
labels for the statistics.- .indent_mods
(
list
)
indentation modifications for the statistics.- .ref_group
(
data.frame
)
reference group data frame.- .in_ref_col
(
logical
)
whether the current column is the reference column.- variables
(
list
)
list with strata variable names.- conf_level
(
numeric
)
confidence level for the confidence interval.- method
(
string
)
method to use for relative risk calculation.- weights_method
(
string
)
method to use for weights calculation in stratified analysis.
Value
a_relative_risk()
returns the corresponding list with formattedrtables::CellValue()
.
s_relative_risk()
returns a named list of elementsrel_risk_ci
andpval
.
Details
The variance of the CMH relative risk estimate is calculated using the Greenland and Robins (1985) variance estimation.
Functions
a_relative_risk()
: Formatted analysis function which is used asafun
. Note that the junco specificref_path
and.spl_context
arguments are used for reference column information.s_relative_risk()
: Statistics function estimating the relative risk for response.
Examples
nex <- 100
dta <- data.frame(
"rsp" = sample(c(TRUE, FALSE), nex, TRUE),
"grp" = sample(c("A", "B"), nex, TRUE),
"f1" = sample(c("a1", "a2"), nex, TRUE),
"f2" = sample(c("x", "y", "z"), nex, TRUE),
stringsAsFactors = TRUE
)
l <- basic_table() |>
split_cols_by(var = "grp") |>
analyze(
vars = "rsp",
afun = a_relative_risk,
extra_args = list(
conf_level = 0.90,
variables = list(strata = "f1"),
ref_path = c("grp", "B")
)
)
build_table(l, df = dta)
#> A B
#> —————————————————————————————————————————————————
#> Relative risk (90% CI) 1.14 (0.79 - 1.65)
#> p-value 0.548
nex <- 100
dta <- data.frame(
"rsp" = sample(c(TRUE, FALSE), nex, TRUE),
"grp" = sample(c("A", "B"), nex, TRUE),
"f1" = sample(c("a1", "a2"), nex, TRUE),
"f2" = sample(c("x", "y", "z"), nex, TRUE),
stringsAsFactors = TRUE
)
s_relative_risk(
df = subset(dta, grp == "A"),
.var = "rsp",
.ref_group = subset(dta, grp == "B"),
.in_ref_col = FALSE,
variables = list(strata = c("f1", "f2")),
conf_level = 0.90
)
#> $rel_risk_ci
#> est lcl ucl
#> 1.0317456 0.7006869 1.5192220
#> attr(,"label")
#> [1] "Relative risk (90% CI)"
#>
#> $pval
#> [1] 0.8962701
#>