
Formatted Analysis and Content Summary Function for Response Tables (RESP01)
Source:R/resp01_functions.R
resp01_acfun.RdThis function applies to both factor and logical columns called
.var from df. Depending on the position in the split, it returns the
right formatted results for the RESP01 and related layouts.
Usage
resp01_acfun(
df,
labelstr = NULL,
label = NULL,
.var,
.spl_context,
include_comp,
.alt_df,
conf_level,
arm,
strata,
formats,
methods
)Arguments
- df
(
data.frame)
data set containing all analysis variables.- labelstr
(
character)
label of the level of the parent split currently being summarized (must be present as second argument in Content Row Functions). Seertables::summarize_row_groups()for more information.- label
(
string)
only for logicals, which label to use. (For factors, the labels are the factor levels.)- .var
(
string)
single variable name that is passed byrtableswhen requested by a statistics function.- .spl_context
(
data.frame)
gives information about ancestor split states that is passed byrtables.- include_comp
(
characterorflag)
whether to include comparative statistic results, eithercharacterfor factors orflagfor logicals.- .alt_df
(
data.frame)
alternative data frame used for denominator calculation.- conf_level
(
proportion)
confidence level of the interval.- arm
(
string)
column name in the data frame that identifies the treatment arms.- strata
(
characterorNULL)
variable names indicating stratification factors.- formats
(
list)
containing formats forprop_ci,comp_stat_ciandpval.- methods
(
list)
containing methods for comparative statistics. The elementcomp_stat_cican be 'rr' (relative risk), 'or_cmh' (odds ratio with CMH estimation and p-value) or 'or_logistic' (odds ratio estimated by conditional or standard logistic regression). The elementpvalcan be 'fisher' (Fisher's exact test) or 'chisq' (chi-square test), only used when using unstratified analyses with 'or_logistic'. The elementprop_cispecifies the method for proportion confidence interval calculation.
Value
The formatted result as rtables::in_rows() result.
Examples
fake_spl_context <- data.frame(
cur_col_split_val = I(list(c(ARM = "A: Drug X", count_prop = "count_prop")))
)
dm <- droplevels(subset(DM, SEX %in% c("F", "M")))
resp01_acfun(
dm,
.alt_df = dm,
.var = "COUNTRY",
.spl_context = fake_spl_context,
conf_level = 0.9,
include_comp = c("USA", "CHN"),
arm = "SEX",
strata = "RACE",
methods = list(
comp_stat_ci = "or_cmh",
pval = "",
prop_ci = "wald"
),
formats = list(
prop_ci = jjcsformat_xx("xx.% - xx.%"),
comp_stat_ci = jjcsformat_xx("xx.xx (xx.xx - xx.xx)"),
pval = jjcsformat_pval_fct(0.05)
)
)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 CHN 179 (50.3%) 0 CHN
#> 2 USA 44 (12.4%) 0 USA
#> 3 BRA 29 (8.1%) 0 BRA
#> 4 PAK 28 (7.9%) 0 PAK
#> 5 NGA 24 (6.7%) 0 NGA
#> 6 RUS 20 (5.6%) 0 RUS
#> 7 JPN 18 (5.1%) 0 JPN
#> 8 GBR 7 (2.0%) 0 GBR
#> 9 CAN 7 (2.0%) 0 CAN
fake_spl_context2 <- data.frame(
cur_col_split_val = I(list(c(ARM = "Overall", comp_stat_ci = "comp_stat_ci")))
)
resp01_acfun(
dm,
.alt_df = dm,
.var = "COUNTRY",
.spl_context = fake_spl_context2,
conf_level = 0.9,
include_comp = c("USA", "CHN"),
arm = "SEX",
strata = "RACE",
methods = list(
comp_stat_ci = "or_cmh",
pval = "",
prop_ci = "wald"
),
formats = list(
prop_ci = jjcsformat_xx("xx.% - xx.%"),
comp_stat_ci = jjcsformat_xx("xx.xx (xx.xx - xx.xx)"),
pval = jjcsformat_pval_fct(0.05)
)
)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 CHN 1.00 (0.71 - 1.42) 0 CHN
#> 2 USA 1.09 (0.64 - 1.86) 0 USA
#> 3 BRA 0 BRA
#> 4 PAK 0 PAK
#> 5 NGA 0 NGA
#> 6 RUS 0 RUS
#> 7 JPN 0 JPN
#> 8 GBR 0 GBR
#> 9 CAN 0 CAN