Formatted Analysis and Content Summary Function for Response Tables (RESP01)
Source:R/resp01_functions.R
resp01_acfun.Rd
This function applies to both `factor` and `logical` columns called `.var` from `df`. Depending on the position in the split, it returns the right formatted results for the RESP01 and related layouts.
Usage
resp01_acfun(
df,
labelstr = NULL,
label = NULL,
.var,
.spl_context,
include_comp,
.alt_df,
conf_level,
arm,
strata,
formats,
methods
)
Arguments
- df
(`data.frame`)
data set containing all analysis variables.- labelstr
(`character`)
label of the level of the parent split currently being summarized (must be present as second argument in Content Row Functions). See [rtables::summarize_row_groups()] for more information.- label
(`string`)
only for logicals, which label to use. (For factors, the labels are the factor levels.)- .var
(`string`)
single variable name that is passed by `rtables` when requested by a statistics function.- .spl_context
(`data.frame`)
gives information about ancestor split states that is passed by `rtables`.- include_comp
(`character` or `flag`)
whether to include comparative statistic results, either `character` for factors or `flag` for logicals.- .alt_df
(`data.frame`)
alternative data frame used for denominator calculation.- conf_level
(`proportion`)
confidence level of the interval.- arm
(`string`)
column name in the data frame that identifies the treatment arms.- strata
(`character` or `NULL`)
variable names indicating stratification factors.- formats
(`list`)
containing formats for `prop_ci`, `comp_stat_ci` and `pval`.- methods
(`list`)
containing methods for comparative statistics. The element `comp_stat_ci` can be 'rr' (relative risk), 'or_cmh' (odds ratio with CMH estimation and p-value) or 'or_logistic' (odds ratio estimated by conditional or standard logistic regression). The element `pval` can be 'fisher' (Fisher's exact test) or 'chisq' (chi-square test), only used when using unstratified analyses with 'or_logistic'. The element `prop_ci` specifies the method for proportion confidence interval calculation.
Examples
fake_spl_context <- data.frame(
cur_col_split_val = I(list(c(ARM = "A: Drug X", count_prop = "count_prop")))
)
dm <- droplevels(subset(DM, SEX %in% c("F", "M")))
resp01_acfun(
dm,
.alt_df = dm,
.var = "COUNTRY",
.spl_context = fake_spl_context,
conf_level = 0.9,
include_comp = c("USA", "CHN"),
arm = "SEX",
strata = "RACE",
methods = list(
comp_stat_ci = "or_cmh",
pval = "",
prop_ci = "wald"
),
formats = list(
prop_ci = jjcsformat_xx("xx.% - xx.%"),
comp_stat_ci = jjcsformat_xx("xx.xx (xx.xx - xx.xx)"),
pval = jjcsformat_pval_fct(0.05)
)
)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 CHN 179 (50.3%) 0 CHN
#> 2 USA 44 (12.4%) 0 USA
#> 3 BRA 29 (8.1%) 0 BRA
#> 4 PAK 28 (7.9%) 0 PAK
#> 5 NGA 24 (6.7%) 0 NGA
#> 6 RUS 20 (5.6%) 0 RUS
#> 7 JPN 18 (5.1%) 0 JPN
#> 8 GBR 7 (2.0%) 0 GBR
#> 9 CAN 7 (2.0%) 0 CAN
fake_spl_context2 <- data.frame(
cur_col_split_val = I(list(c(ARM = "Overall", comp_stat_ci = "comp_stat_ci")))
)
resp01_acfun(
dm,
.alt_df = dm,
.var = "COUNTRY",
.spl_context = fake_spl_context2,
conf_level = 0.9,
include_comp = c("USA", "CHN"),
arm = "SEX",
strata = "RACE",
methods = list(
comp_stat_ci = "or_cmh",
pval = "",
prop_ci = "wald"
),
formats = list(
prop_ci = jjcsformat_xx("xx.% - xx.%"),
comp_stat_ci = jjcsformat_xx("xx.xx (xx.xx - xx.xx)"),
pval = jjcsformat_pval_fct(0.05)
)
)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 CHN 1.00 (0.71 - 1.42) 0 CHN
#> 2 USA 1.09 (0.64 - 1.86) 0 USA
#> 3 BRA 0 BRA
#> 4 PAK 0 PAK
#> 5 NGA 0 NGA
#> 6 RUS 0 RUS
#> 7 JPN 0 JPN
#> 8 GBR 0 GBR
#> 9 CAN 0 CAN