Derives the count_denom_fraction statistic (i.e., 'xx /xx (xx.x percent)' ) Summarizes the number of unique subjects with a response = 'Y' for a given variable (e.g. TRTEMFL) within each category of another variable (e.g., SEX). Note that the denominator is derived using input df, in order to have these aligned with alt_source_df, it is expected that df includes all subjects.
Usage
response_by_var(
df,
labelstr = NULL,
.var,
.N_col,
resp_var = NULL,
id = "USUBJID",
.format = jjcsformat_count_denom_fraction,
...
)
Arguments
- df
Name of dataframe being analyzed.
- labelstr
Custom label for the variable being analyzed.
- .var
Name of the variable being analyzed. Records with non-missing values will be counted in the denominator.
- .N_col
numeric(1). The total for the current column.
- resp_var
Name of variable, for which, records with a value of 'Y' will be counted in the numerator.
- id
Name of column in df which will have patient identifiers
- .format
Format for the count/denominator/fraction output.
- ...
Additional arguments passed to the function.
Details
This is an analysis function for use within analyze
. Arguments
df
, .var
will be populated automatically by rtables during
the tabulation process.
Examples
library(dplyr)
ADAE <- data.frame(
USUBJID = c(
"XXXXX01", "XXXXX02", "XXXXX03", "XXXXX04", "XXXXX05",
"XXXXX06", "XXXXX07", "XXXXX08", "XXXXX09", "XXXXX10"
),
SEX_DECODE = c(
"Female", "Female", "Male", "Female", "Male",
"Female", "Male", "Female", "Male", "Female"
),
TRT01A = c(
"ARMA", "ARMB", "ARMA", "ARMB", "ARMB",
"Placebo", "Placebo", "Placebo", "ARMA", "ARMB"
),
TRTEMFL = c("Y", "Y", "N", "Y", "Y", "Y", "Y", "N", "Y", "Y")
)
ADAE <- ADAE |>
mutate(
TRT01A = as.factor(TRT01A),
SEX_DECODE = as.factor(SEX_DECODE)
)
lyt <- basic_table() |>
split_cols_by("TRT01A") |>
analyze(
vars = "SEX_DECODE",
var_labels = "Sex, n/Ns (%)",
show_labels = "visible",
afun = response_by_var,
extra_args = list(resp_var = "TRTEMFL"),
nested = FALSE
)
result <- build_table(lyt, ADAE)
result
#> ARMA ARMB Placebo
#> ——————————————————————————————————————————————————————————
#> Sex, n/Ns (%)
#> Female 1/1 (100.0%) 3/3 (100.0%) 1/2 (50.0%)
#> Male 1/2 (50.0%) 1/1 (100.0%) 1/1 (100.0%)