TL Catalog
  1. Tables
  2. Adverse Events
  3. TSFAE09
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Adverse Events
  3. TSFAE09

TSFAE09

Subjects With Treatment-emergent Adverse Events by System Organ Class


Output

  • Preview
Code
# Program Name:              tsfae09.R

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

# - Define output ID and file location

tblid <- "TSFAE09"
fileid <- tblid
tab_titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

trtvar <- "TRT01A"
popfl <- "SAFFL"
combined_colspan_trt <- TRUE
risk_diff <- TRUE
rr_method <- "wald"
ctrl_grp <- "Placebo"

if (combined_colspan_trt == TRUE) {
  # Set up levels and label for the required combined columns
  add_combo <- add_combo_facet(
    "Combined",
    label = "Combined",
    levels = c("Xanomeline High Dose", "Xanomeline Low Dose")
  )

  # choose if any facets need to be removed - e.g remove the combined column for placebo
  rm_combo_from_placebo <- cond_rm_facets(
    facets = "Combined",
    ancestor_pos = NA,
    value = " ",
    split = "colspan_trt"
  )

  mysplit <- make_split_fun(post = list(add_combo, rm_combo_from_placebo))
}

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(!!rlang::sym(popfl) == "Y") %>%
  select(STUDYID, USUBJID, all_of(trtvar), all_of(popfl))

adae <- pharmaverseadamjnj::adae %>%
  filter(TRTEMFL == "Y") %>%
  select(USUBJID, TRTEMFL, AEBODSYS)

adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == "Placebo", " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

if (risk_diff == TRUE) {
  adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
  adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs", ctrl_grp))
}

# join data together
ae <- adae %>% right_join(., adsl, by = c("USUBJID"))

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

# Define layout and build table:

ref_path <- c("colspan_trt", " ", "TRT01A", "Placebo")
extra_args_rr <- list(
  method = rr_method,
  ref_path = ref_path,
  .stats = c("count_unique_fraction")
)


lyt <- basic_table(
  top_level_section_div = " ",
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  )

if (combined_colspan_trt == TRUE) {
  lyt <- lyt %>%
    split_cols_by(trtvar, split_fun = mysplit)
} else {
  lyt <- lyt %>%
    split_cols_by(trtvar)
}

if (risk_diff == TRUE) {
  lyt <- lyt %>%
    split_cols_by("rrisk_header", nested = FALSE) %>%
    split_cols_by(
      trtvar,
      labels_var = "rrisk_label",
      split_fun = remove_split_levels("Placebo")
    )
}

lyt <- lyt %>%
  analyze(
    "AEBODSYS",
    afun = a_freq_j,
    extra_args = append(extra_args_rr, NULL),
    indent_mod = 0L
  ) %>%
  append_topleft("System Organ Class, n (%)")

result <- build_table(lyt, ae, alt_counts_df = adsl)

# Post-Processing step to sort by descending count on chosen active treatment columns.

if (length(adae$TRTEMFL) != 0) {
  result <- sort_at_path(
    result,
    c("AEBODSYS"),
    scorefun = jj_complex_scorefun()
  )
}

## Remove the N=xx column headers for the risk difference columns
result <- remove_col_count(result)

## Remove any rogue null rows
result <- result %>%
  safe_prune_table(prune_func = keep_rows(keep_non_null_rows))

# Add titles and footnotes:

result <- set_titles(result, tab_titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "landscape")

TSFAE09: Subjects With Treatment-emergent Adverse Events by System Organ Class; Safety Analysis Set (Study jjcs - core)

Active Study Agent

Risk Difference (%) (95% CI)

Xanomeline High Dose

Xanomeline Low Dose

Combined

Placebo

Xanomeline High Dose vs Placebo

Xanomeline Low Dose vs Placebo

System Organ Class, n (%)

N=53

N=73

N=126

N=59

General disorders and
 administration site conditions

26 (49.1%)

38 (52.1%)

64 (50.8%)

16 (27.1%)

21.9 (4.3, 39.5)

24.9 (8.8, 41.1)

Skin and subcutaneous tissue
 disorders

34 (64.2%)

28 (38.4%)

62 (49.2%)

16 (27.1%)

37.0 (19.8, 54.2)

11.2 (-4.7, 27.1)

Nervous system disorders

18 (34.0%)

18 (24.7%)

36 (28.6%)

5 (8.5%)

25.5 (10.9, 40.1)

16.2 (4.0, 28.4)

Gastrointestinal disorders

14 (26.4%)

10 (13.7%)

24 (19.0%)

7 (11.9%)

14.6 (0.1, 29.0)

1.8 (-9.6, 13.2)

Cardiac disorders

11 (20.8%)

11 (15.1%)

22 (17.5%)

7 (11.9%)

8.9 (-4.8, 22.6)

3.2 (-8.4, 14.8)

Infections and infestations

9 (17.0%)

6 (8.2%)

15 (11.9%)

14 (23.7%)

-6.7 (-21.6, 8.1)

-15.5 (-28.1, -3.0)

Psychiatric disorders

6 (11.3%)

8 (11.0%)

14 (11.1%)

7 (11.9%)

-0.5 (-12.4, 11.3)

-0.9 (-11.8, 10.0)

Respiratory, thoracic and
 mediastinal disorders

7 (13.2%)

6 (8.2%)

13 (10.3%)

5 (8.5%)

4.7 (-6.8, 16.3)

-0.3 (-9.8, 9.2)

Investigations

5 (9.4%)

7 (9.6%)

12 (9.5%)

7 (11.9%)

-2.4 (-13.8, 9.0)

-2.3 (-12.9, 8.4)

Musculoskeletal and connective
 tissue disorders

4 (7.5%)

5 (6.8%)

9 (7.1%)

2 (3.4%)

4.2 (-4.3, 12.6)

3.5 (-3.9, 10.9)

Injury, poisoning and
 procedural complications

3 (5.7%)

5 (6.8%)

8 (6.3%)

2 (3.4%)

2.3 (-5.5, 10.0)

3.5 (-3.9, 10.9)

Renal and urinary disorders

2 (3.8%)

3 (4.1%)

5 (4.0%)

2 (3.4%)

0.4 (-6.5, 7.3)

0.7 (-5.8, 7.2)

Vascular disorders

1 (1.9%)

3 (4.1%)

4 (3.2%)

3 (5.1%)

-3.2 (-9.9, 3.5)

-1.0 (-8.2, 6.2)

Ear and labyrinth disorders

1 (1.9%)

2 (2.7%)

3 (2.4%)

1 (1.7%)

0.2 (-4.7, 5.1)

1.0 (-3.9, 6.0)

Eye disorders

1 (1.9%)

2 (2.7%)

3 (2.4%)

2 (3.4%)

-1.5 (-7.4, 4.4)

-0.7 (-6.6, 5.3)

Reproductive system and breast
 disorders

3 (5.7%)

0

3 (2.4%)

3 (5.1%)

0.6 (-7.8, 8.9)

-5.1 (-10.7, 0.5)

Congenital, familial and genetic
 disorders

1 (1.9%)

1 (1.4%)

2 (1.6%)

0

1.9 (-1.8, 5.5)

1.4 (-1.3, 4.0)

Neoplasms benign, malignant
 and unspecified (incl cysts
 and polyps)

1 (1.9%)

1 (1.4%)

2 (1.6%)

0

1.9 (-1.8, 5.5)

1.4 (-1.3, 4.0)

Endocrine disorders

0

1 (1.4%)

1 (0.8%)

1 (1.7%)

-1.7 (-5.0, 1.6)

-0.3 (-4.6, 3.9)

Metabolism and nutrition
 disorders

1 (1.9%)

0

1 (0.8%)

2 (3.4%)

-1.5 (-7.4, 4.4)

-3.4 (-8.0, 1.2)

Surgical and medical
 procedures

1 (1.9%)

0

1 (0.8%)

2 (3.4%)

-1.5 (-7.4, 4.4)

-3.4 (-8.0, 1.2)

Hepatobiliary disorders

0

0

0

0

0.0 (0.0, 0.0)

0.0 (0.0, 0.0)

Immune system disorders

0

0

0

0

0.0 (0.0, 0.0)

0.0 (0.0, 0.0)

Social circumstances

0

0

0

0

0.0 (0.0, 0.0)

0.0 (0.0, 0.0)

Note: Subjects are counted only once for any given SOC, regardless of the number of times they actually experienced an event within the SOC.

Note: Adverse events are coded using MedDRA version 26.0.

Download RTF file

TSFAE08
TSFAE10
Source Code
---
title: TSFAE09
subtitle: Subjects With Treatment-emergent Adverse Events by System Organ Class
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsfae09.R

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

# - Define output ID and file location

tblid <- "TSFAE09"
fileid <- tblid
tab_titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

trtvar <- "TRT01A"
popfl <- "SAFFL"
combined_colspan_trt <- TRUE
risk_diff <- TRUE
rr_method <- "wald"
ctrl_grp <- "Placebo"

if (combined_colspan_trt == TRUE) {
  # Set up levels and label for the required combined columns
  add_combo <- add_combo_facet(
    "Combined",
    label = "Combined",
    levels = c("Xanomeline High Dose", "Xanomeline Low Dose")
  )

  # choose if any facets need to be removed - e.g remove the combined column for placebo
  rm_combo_from_placebo <- cond_rm_facets(
    facets = "Combined",
    ancestor_pos = NA,
    value = " ",
    split = "colspan_trt"
  )

  mysplit <- make_split_fun(post = list(add_combo, rm_combo_from_placebo))
}

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(!!rlang::sym(popfl) == "Y") %>%
  select(STUDYID, USUBJID, all_of(trtvar), all_of(popfl))

adae <- pharmaverseadamjnj::adae %>%
  filter(TRTEMFL == "Y") %>%
  select(USUBJID, TRTEMFL, AEBODSYS)

adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == "Placebo", " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

if (risk_diff == TRUE) {
  adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
  adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs", ctrl_grp))
}

# join data together
ae <- adae %>% right_join(., adsl, by = c("USUBJID"))

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

# Define layout and build table:

ref_path <- c("colspan_trt", " ", "TRT01A", "Placebo")
extra_args_rr <- list(
  method = rr_method,
  ref_path = ref_path,
  .stats = c("count_unique_fraction")
)


lyt <- basic_table(
  top_level_section_div = " ",
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  )

if (combined_colspan_trt == TRUE) {
  lyt <- lyt %>%
    split_cols_by(trtvar, split_fun = mysplit)
} else {
  lyt <- lyt %>%
    split_cols_by(trtvar)
}

if (risk_diff == TRUE) {
  lyt <- lyt %>%
    split_cols_by("rrisk_header", nested = FALSE) %>%
    split_cols_by(
      trtvar,
      labels_var = "rrisk_label",
      split_fun = remove_split_levels("Placebo")
    )
}

lyt <- lyt %>%
  analyze(
    "AEBODSYS",
    afun = a_freq_j,
    extra_args = append(extra_args_rr, NULL),
    indent_mod = 0L
  ) %>%
  append_topleft("System Organ Class, n (%)")

result <- build_table(lyt, ae, alt_counts_df = adsl)

# Post-Processing step to sort by descending count on chosen active treatment columns.

if (length(adae$TRTEMFL) != 0) {
  result <- sort_at_path(
    result,
    c("AEBODSYS"),
    scorefun = jj_complex_scorefun()
  )
}

## Remove the N=xx column headers for the risk difference columns
result <- remove_col_count(result)

## Remove any rogue null rows
result <- result %>%
  safe_prune_table(prune_func = keep_rows(keep_non_null_rows))

# Add titles and footnotes:

result <- set_titles(result, tab_titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "landscape")
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences