TL Catalog
  1. Tables
  2. Exposure
  3. TSIEX08
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Exposure
  3. TSIEX08

TSIEX08

Incidence and Reason for Dose Modification


Output

  • Preview
Code
# Program Name:              tsiex08.R

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

# - Define output ID and file location

tblid <- "TSIEX08"
fileid <- tblid
tab_titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

trtvar <- "TRT01A"
popfl <- "SAFFL"
combined_colspan_trt <- TRUE

if (combined_colspan_trt == TRUE) {
  # Set up levels and label for the required combined columns
  add_combo <- add_combo_facet(
    "Combined",
    label = "Combined",
    levels = c("Xanomeline High Dose", "Xanomeline Low Dose")
  )

  # choose if any facets need to be removed - e.g remove the combined column for placebo
  rm_combo_from_placebo <- cond_rm_facets(
    facets = "Combined",
    ancestor_pos = NA,
    value = " ",
    split = "colspan_trt"
  )

  mysplit <- make_split_fun(post = list(add_combo, rm_combo_from_placebo))
}

# Process Data:

# Read in required data
adsl <- pharmaverseadamjnj::adsl %>%
  filter(!!rlang::sym(popfl) == "Y") %>%
  select(STUDYID, USUBJID, all_of(trtvar), all_of(popfl))

adex1 <- pharmaverseadamjnj::adex %>%
  filter(!grepl("UNSCHEDULED", AVISIT, ignore.case = TRUE))

# Convert AVISIT to sentence case and apply levels to maintain ordering
avisit_levs <- stringr::str_to_sentence(levels(adex1$AVISIT))
adex1$AVISIT <- stringr::str_to_sentence(adex1$AVISIT)
adex1$AVISIT <- factor(adex1$AVISIT, levels = avisit_levs)

adex2 <- pharmaverseadamjnj::adex %>%
  mutate(AVISIT = "Overall")

adex_ <- bind_rows(adex1, adex2)

adex1$AVISIT <- droplevels(adex1$AVISIT)
adex_$AVISIT <- factor(
  adex_$AVISIT,
  levels = c("Overall", levels(adex1$AVISIT))
)

adex <- adex_ %>%
  select(USUBJID, ACAT1, ACAT2, AREASOC, AADJ, AVISIT, AVISITN)

adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == "Placebo", " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

# join data together
ex <- adex %>% inner_join(., adsl, by = c("USUBJID"))

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = "Placebo",
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

# Define layout and build table:

# Note :
# variables AREASOC and AADJ contain missing values, these are removed inside a_freq_j when using denom = "n_df"
# either use n_parentdf and denom_by = AVISIT to get proper denominator
# alternative would be to use ex <- df_explicit_na(ex, omit_columns = "colspan_trt", na_level = "<Missing>") and
# and have denom = "n_df" in extra_args1 and
# add excl_levels = "<Missing>" to the extra_args in the calls to these 2 variables
# excl_levels cannot be used in the overall extra_args1 as val and excl_levels cannot be used together

extra_args1 <- list(
  .stats = "count_unique_fraction",
  denom = "n_parentdf",
  denom_by = "AVISIT"
)

lyt <- rtables::basic_table(
  top_level_section_div = " ",
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  )

if (combined_colspan_trt == TRUE) {
  lyt <- lyt %>%
    split_cols_by(trtvar, split_fun = mysplit)
} else {
  lyt <- lyt %>%
    split_cols_by(trtvar)
}


lyt <- lyt %>%
  split_rows_by(
    "AVISIT",
    split_label = "Time Point",
    split_fun = trim_levels_in_group("STUDYID"),
    label_pos = "topleft",
    indent_mod = 0L,
    section_div = c(" ")
  ) %>%
  summarize_row_groups(
    "AVISIT",
    cfun = a_freq_j,
    extra_args = list(.stats = "n_df"),
    indent_mod = 0L
  ) %>%
  analyze(
    "ACAT2",
    afun = a_freq_j,
    extra_args = append(
      extra_args1,
      list(label = "Dose not administered", val = "Dose not administered")
    ),
    indent_mod = 0L,
    show_labels = "hidden"
  ) %>%
  analyze(
    "AREASOC",
    afun = a_freq_j,
    extra_args = extra_args1,
    show_labels = "hidden",
    indent_mod = 1L
  ) %>%
  analyze(
    "ACAT1",
    afun = a_freq_j,
    extra_args = append(
      extra_args1,
      list(label = "Dose adjusted", val = "Dose adjusted")
    ),
    indent_mod = 0L,
    show_labels = "hidden"
  ) %>%
  analyze(
    "AADJ",
    afun = a_freq_j,
    extra_args = extra_args1,
    show_labels = "hidden",
    indent_mod = 1L
  ) %>%
  append_topleft("  Dose Modification, n (%)")

result <- build_table(lyt, ex, alt_counts_df = adsl)

# Prune table to only keep those that have >0 counts in any treatment column specified

more_than_zero <- has_count_in_any_col(
  atleast = 1,
  col_names = c(
    "Active Study Agent.Xanomeline High Dose",
    "Active Study Agent.Xanomeline Low Dose",
    "Active Study Agent.Combined",
    " .Placebo"
  )
)

result <- safe_prune_table(result, keep_rows(more_than_zero))

# Add titles and footnotes:

result <- set_titles(result, tab_titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "portrait")

TSIEX08: Incidence and Reason for Dose Modification; Safety Analysis Set (Study jjcs - core)

Active Study Agent

Time Point

Xanomeline High Dose

Xanomeline Low Dose

Combined

Placebo

Dose Modification, n (%)

N=53

N=73

N=126

N=59

Overall

53

73

126

59

Dose not administered

47 (88.7%)

52 (71.2%)

99 (78.6%)

49 (83.1%)

Adverse Event

1 (1.9%)

0

1 (0.8%)

0

Other

1 (1.9%)

0

1 (0.8%)

0

Dose adjusted

1 (1.9%)

0

1 (0.8%)

0

Adverse Event

1 (1.9%)

0

1 (0.8%)

0

Other

1 (1.9%)

0

1 (0.8%)

0

Baseline

53

73

126

59

Dose not administered

28 (52.8%)

36 (49.3%)

64 (50.8%)

24 (40.7%)

Week 2

53

52

105

56

Dose not administered

28 (52.8%)

28 (53.8%)

56 (53.3%)

30 (53.6%)

Adverse Event

1 (1.9%)

0

1 (1.0%)

0

Dose adjusted

1 (1.9%)

0

1 (1.0%)

0

Adverse Event

1 (1.9%)

0

1 (1.0%)

0

Week 24

20

15

35

40

Dose not administered

9 (45.0%)

8 (53.3%)

17 (48.6%)

25 (62.5%)

Adverse Event

1 (5.0%)

0

1 (2.9%)

0

Other

1 (5.0%)

0

1 (2.9%)

0

Dose adjusted

1 (5.0%)

0

1 (2.9%)

0

Adverse Event

1 (5.0%)

0

1 (2.9%)

0

Other

1 (5.0%)

0

1 (2.9%)

0

Note: Percentages are based on the number of subjects who had a visit at the specified time point.

Note: Subjects may be counted in more than one category.

Download RTF file

TSIEX07
TSIEX09
Source Code
---
title: TSIEX08
subtitle: Incidence and Reason for Dose Modification
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsiex08.R

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

# - Define output ID and file location

tblid <- "TSIEX08"
fileid <- tblid
tab_titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

trtvar <- "TRT01A"
popfl <- "SAFFL"
combined_colspan_trt <- TRUE

if (combined_colspan_trt == TRUE) {
  # Set up levels and label for the required combined columns
  add_combo <- add_combo_facet(
    "Combined",
    label = "Combined",
    levels = c("Xanomeline High Dose", "Xanomeline Low Dose")
  )

  # choose if any facets need to be removed - e.g remove the combined column for placebo
  rm_combo_from_placebo <- cond_rm_facets(
    facets = "Combined",
    ancestor_pos = NA,
    value = " ",
    split = "colspan_trt"
  )

  mysplit <- make_split_fun(post = list(add_combo, rm_combo_from_placebo))
}

# Process Data:

# Read in required data
adsl <- pharmaverseadamjnj::adsl %>%
  filter(!!rlang::sym(popfl) == "Y") %>%
  select(STUDYID, USUBJID, all_of(trtvar), all_of(popfl))

adex1 <- pharmaverseadamjnj::adex %>%
  filter(!grepl("UNSCHEDULED", AVISIT, ignore.case = TRUE))

# Convert AVISIT to sentence case and apply levels to maintain ordering
avisit_levs <- stringr::str_to_sentence(levels(adex1$AVISIT))
adex1$AVISIT <- stringr::str_to_sentence(adex1$AVISIT)
adex1$AVISIT <- factor(adex1$AVISIT, levels = avisit_levs)

adex2 <- pharmaverseadamjnj::adex %>%
  mutate(AVISIT = "Overall")

adex_ <- bind_rows(adex1, adex2)

adex1$AVISIT <- droplevels(adex1$AVISIT)
adex_$AVISIT <- factor(
  adex_$AVISIT,
  levels = c("Overall", levels(adex1$AVISIT))
)

adex <- adex_ %>%
  select(USUBJID, ACAT1, ACAT2, AREASOC, AADJ, AVISIT, AVISITN)

adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == "Placebo", " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

# join data together
ex <- adex %>% inner_join(., adsl, by = c("USUBJID"))

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = "Placebo",
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

# Define layout and build table:

# Note :
# variables AREASOC and AADJ contain missing values, these are removed inside a_freq_j when using denom = "n_df"
# either use n_parentdf and denom_by = AVISIT to get proper denominator
# alternative would be to use ex <- df_explicit_na(ex, omit_columns = "colspan_trt", na_level = "<Missing>") and
# and have denom = "n_df" in extra_args1 and
# add excl_levels = "<Missing>" to the extra_args in the calls to these 2 variables
# excl_levels cannot be used in the overall extra_args1 as val and excl_levels cannot be used together

extra_args1 <- list(
  .stats = "count_unique_fraction",
  denom = "n_parentdf",
  denom_by = "AVISIT"
)

lyt <- rtables::basic_table(
  top_level_section_div = " ",
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  )

if (combined_colspan_trt == TRUE) {
  lyt <- lyt %>%
    split_cols_by(trtvar, split_fun = mysplit)
} else {
  lyt <- lyt %>%
    split_cols_by(trtvar)
}


lyt <- lyt %>%
  split_rows_by(
    "AVISIT",
    split_label = "Time Point",
    split_fun = trim_levels_in_group("STUDYID"),
    label_pos = "topleft",
    indent_mod = 0L,
    section_div = c(" ")
  ) %>%
  summarize_row_groups(
    "AVISIT",
    cfun = a_freq_j,
    extra_args = list(.stats = "n_df"),
    indent_mod = 0L
  ) %>%
  analyze(
    "ACAT2",
    afun = a_freq_j,
    extra_args = append(
      extra_args1,
      list(label = "Dose not administered", val = "Dose not administered")
    ),
    indent_mod = 0L,
    show_labels = "hidden"
  ) %>%
  analyze(
    "AREASOC",
    afun = a_freq_j,
    extra_args = extra_args1,
    show_labels = "hidden",
    indent_mod = 1L
  ) %>%
  analyze(
    "ACAT1",
    afun = a_freq_j,
    extra_args = append(
      extra_args1,
      list(label = "Dose adjusted", val = "Dose adjusted")
    ),
    indent_mod = 0L,
    show_labels = "hidden"
  ) %>%
  analyze(
    "AADJ",
    afun = a_freq_j,
    extra_args = extra_args1,
    show_labels = "hidden",
    indent_mod = 1L
  ) %>%
  append_topleft("  Dose Modification, n (%)")

result <- build_table(lyt, ex, alt_counts_df = adsl)

# Prune table to only keep those that have >0 counts in any treatment column specified

more_than_zero <- has_count_in_any_col(
  atleast = 1,
  col_names = c(
    "Active Study Agent.Xanomeline High Dose",
    "Active Study Agent.Xanomeline Low Dose",
    "Active Study Agent.Combined",
    " .Placebo"
  )
)

result <- safe_prune_table(result, keep_rows(more_than_zero))

# Add titles and footnotes:

result <- set_titles(result, tab_titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "portrait")
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences