TL Catalog
  1. Tables
  2. Demographic
  3. TSIMH01
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Demographic
  3. TSIMH01

TSIMH01

Medical History/Medical History of Interest by System Organ Class and Preferred Term


Output

  • Preview
Code
# Program Name:              tsimh01

# Prep environment:

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSIMH01"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map
popfls <- c("FASFL", "SAFFL")
popfl <- popfls[1]
trtvar <- "TRT01P"
ctrl_grp <- "Placebo"

table_vars <- c("MHOCCUR", "MHCAT", "MHBODSYS", "MHDECOD", "MHENRTPT", "MHTERM")

# Process data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(STUDYID, USUBJID, all_of(popfls), starts_with("TRT01"))

mh <- pharmaversesdtmjnj::mh

if (!("MHOCCUR" %in% names(mh))) {
  ## add missing MHOCCUR variable for now
  mh$MHOCCUR <- "Y"
}

mh <- mh %>% select(all_of(c("USUBJID", table_vars)))

## define formats - most could be removed if we could start from metadata-enhanced rds dataset

mh <- mh %>%
  mutate(
    MHDECOD = factor(case_when(
      MHDECOD == "" ~ paste0("Uncoded: ", MHTERM),
      .default = MHDECOD
    )),
    MHBODSYS = factor(case_when(
      MHBODSYS == "" ~ "Uncoded",
      .default = MHBODSYS
    ))
  )

### restrict to mh
### here : use MHENRTPT for ONGOING

mh <- mh %>%
  filter(MHENRTPT == "ONGOING")

adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)


mh <- mh %>% inner_join(., adsl, by = c("USUBJID"))

## update label genmh_label to match selection that has been made
genmh_label <- "Subjects with ≥1 medical history"

genmh_label <- "Subjects with ≥1 ongoing medical history"

## genmh_label <-  "Subjects with ≥1 medical history of interest"  # when a different selection is made

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

# Define layout and build table:

split_fun <- drop_split_levels

countfraction_subjects <- function(df, labelstr, .var, .N_col, id = "USUBJID") {
  nsub <- length(unique(df[[id]]))
  denom <- .N_col
  count_fraction <- c(nsub, nsub / denom)

  ret <- in_rows(
    count_fraction,
    .formats = jjcsformat_count_fraction,
    .labels = sprintf(labelstr)
  )

  return(ret)
}

lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx",
  top_level_section_div = " "
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(trtvar) %>%
  add_overall_col("Total") %>%
  analyze(
    "MHOCCUR",
    var_labels = "Total number of cycles received, n (%)",
    afun = a_freq_j,
    extra_args = list(
      label = genmh_label,
      .stats = c("count_unique_fraction")
    ),
    show_labels = "hidden"
  ) %>%
  split_rows_by(
    "MHBODSYS",
    split_label = "System Organ Class",
    split_fun = trim_levels_in_group("MHDECOD"),
    label_pos = "topleft",
    section_div = c(" ")
  ) %>%
  ### ensure to utilize a cfun that counts unique subjects
  summarize_row_groups("MHBODSYS", cfun = countfraction_subjects) %>%
  count_occurrences(
    "MHDECOD",
    .stats = c("count_fraction"),
    .formats = c("count_fraction" = jjcsformat_count_fraction)
  ) %>%
  append_topleft("  Preferred Term, n (%)")

result <- build_table(lyt, mh, alt_counts_df = adsl)

# Post-Processing:

result <- sort_at_path(
  result,
  c("root", "MHBODSYS"),
  scorefun = jj_complex_scorefun("Total")
)
result <- sort_at_path(
  result,
  c("root", "MHBODSYS", "*", "MHDECOD"),
  scorefun = jj_complex_scorefun("Total")
)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table:

tt_to_tlgrtf(string_map = string_map, tt = result, fileid)

TSIMH01: [Medical History/Medical History of Interest] by System Organ Class and Preferred Term; Full Analysis Set (Study jjcs - core)

Active Study Agent

System Organ Class

Xanomeline High Dose

Xanomeline Low Dose

Placebo

Total

Preferred Term, n (%)

N=84

N=84

N=86

N=254

Subjects with ≥1 ongoing
 medical history

2 (2.4%)

0

1 (1.2%)

3 (1.2%)

SURGICAL AND MEDICAL
 PROCEDURES

1 (1.2%)

2 (2.4%)

2 (2.3%)

5 (2.0%)

CATARACT OPERATION

0

0

1 (1.2%)

1 (0.4%)

HERNIA REPAIR

1 (1.2%)

0

0

1 (0.4%)

HIP ARTHROPLASTY

0

0

1 (1.2%)

1 (0.4%)

INTERVERTEBRAL DISC
 OPERATION

0

1 (1.2%)

0

1 (0.4%)

TOOTH EXTRACTION

0

1 (1.2%)

0

1 (0.4%)

INJURY, POISONING AND
 PROCEDURAL COMPLICATIONS

0

0

2 (2.3%)

2 (0.8%)

SKIN LACERATION

0

0

2 (2.3%)

2 (0.8%)

CONTUSION

0

0

1 (1.2%)

1 (0.4%)

PAIN TRAUMA ACTIVATED

0

0

1 (1.2%)

1 (0.4%)

METABOLISM AND NUTRITION
 DISORDERS

1 (1.2%)

0

1 (1.2%)

2 (0.8%)

HYPERCHOLESTEROLAEMIA

0

0

1 (1.2%)

1 (0.4%)

VITAMIN B12 DEFICIENCY

1 (1.2%)

0

0

1 (0.4%)

INFECTIONS AND INFESTATIONS

0

0

1 (1.2%)

1 (0.4%)

NASOPHARYNGITIS

0

0

1 (1.2%)

1 (0.4%)

INVESTIGATIONS

1 (1.2%)

0

0

1 (0.4%)

BLOOD PRESSURE INCREASED

1 (1.2%)

0

0

1 (0.4%)

Note: Medical history is coded using MedDRA version 26.0.

Download RTF file

TSIDEM02
TSIDS01
Source Code
---
title: TSIMH01
subtitle: Medical History/Medical History of Interest by System Organ Class and Preferred Term
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsimh01

# Prep environment:

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSIMH01"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map
popfls <- c("FASFL", "SAFFL")
popfl <- popfls[1]
trtvar <- "TRT01P"
ctrl_grp <- "Placebo"

table_vars <- c("MHOCCUR", "MHCAT", "MHBODSYS", "MHDECOD", "MHENRTPT", "MHTERM")

# Process data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(STUDYID, USUBJID, all_of(popfls), starts_with("TRT01"))

mh <- pharmaversesdtmjnj::mh

if (!("MHOCCUR" %in% names(mh))) {
  ## add missing MHOCCUR variable for now
  mh$MHOCCUR <- "Y"
}

mh <- mh %>% select(all_of(c("USUBJID", table_vars)))

## define formats - most could be removed if we could start from metadata-enhanced rds dataset

mh <- mh %>%
  mutate(
    MHDECOD = factor(case_when(
      MHDECOD == "" ~ paste0("Uncoded: ", MHTERM),
      .default = MHDECOD
    )),
    MHBODSYS = factor(case_when(
      MHBODSYS == "" ~ "Uncoded",
      .default = MHBODSYS
    ))
  )

### restrict to mh
### here : use MHENRTPT for ONGOING

mh <- mh %>%
  filter(MHENRTPT == "ONGOING")

adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)


mh <- mh %>% inner_join(., adsl, by = c("USUBJID"))

## update label genmh_label to match selection that has been made
genmh_label <- "Subjects with ≥1 medical history"

genmh_label <- "Subjects with ≥1 ongoing medical history"

## genmh_label <-  "Subjects with ≥1 medical history of interest"  # when a different selection is made

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

# Define layout and build table:

split_fun <- drop_split_levels

countfraction_subjects <- function(df, labelstr, .var, .N_col, id = "USUBJID") {
  nsub <- length(unique(df[[id]]))
  denom <- .N_col
  count_fraction <- c(nsub, nsub / denom)

  ret <- in_rows(
    count_fraction,
    .formats = jjcsformat_count_fraction,
    .labels = sprintf(labelstr)
  )

  return(ret)
}

lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx",
  top_level_section_div = " "
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(trtvar) %>%
  add_overall_col("Total") %>%
  analyze(
    "MHOCCUR",
    var_labels = "Total number of cycles received, n (%)",
    afun = a_freq_j,
    extra_args = list(
      label = genmh_label,
      .stats = c("count_unique_fraction")
    ),
    show_labels = "hidden"
  ) %>%
  split_rows_by(
    "MHBODSYS",
    split_label = "System Organ Class",
    split_fun = trim_levels_in_group("MHDECOD"),
    label_pos = "topleft",
    section_div = c(" ")
  ) %>%
  ### ensure to utilize a cfun that counts unique subjects
  summarize_row_groups("MHBODSYS", cfun = countfraction_subjects) %>%
  count_occurrences(
    "MHDECOD",
    .stats = c("count_fraction"),
    .formats = c("count_fraction" = jjcsformat_count_fraction)
  ) %>%
  append_topleft("  Preferred Term, n (%)")

result <- build_table(lyt, mh, alt_counts_df = adsl)

# Post-Processing:

result <- sort_at_path(
  result,
  c("root", "MHBODSYS"),
  scorefun = jj_complex_scorefun("Total")
)
result <- sort_at_path(
  result,
  c("root", "MHBODSYS", "*", "MHDECOD"),
  scorefun = jj_complex_scorefun("Total")
)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table:

tt_to_tlgrtf(string_map = string_map, tt = result, fileid)
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences