TL Catalog
  1. Tables
  2. Vital Signs and Physical Findings
  3. TSFVIT05
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Vital Signs and Physical Findings
  3. TSFVIT05

TSFVIT05

Subjects With On-treatment Clinically Important Vital Signs Over Time


Output

  • Preview
Code
# Program Name:              tsfvit05

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSFVIT05"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

popfl <- "SAFFL"
trtvar <- "TRT01A"
ctrl_grp <- "Placebo"

selparamcd <- c("PULSE", "SYSBP", "DIABP")

selvisit <- c("Cycle 02", "Cycle 04")

### as in dataset, order is important for later processing
### not automated, hard coded approach for ease of reading
### ideally the datasets already contain the appropriate case, to ensure units are in proper case
sel_param <- c(
  "Pulse Rate (beats/min)",
  "Systolic Blood Pressure (mmHg)",
  "Diastolic Blood Pressure (mmHg)"
)
sel_param_case <- c(
  "Pulse rate (beats/min)",
  "Systolic blood pressure (mmHg)",
  "Diastolic blood pressure (mmHg)"
)

## different variants of table
over_time <- TRUE # over time analysis, ALSO restricted to on-treatment records
worst <- TRUE # analysis of min/max value, restricted to on-treatment records
## you can set both worst and over_time to TRUE, the "worst" timepoint will be shown first
treatment_emergent <- FALSE # only consider te values

relrisk <- FALSE
# by default JJCS there is no need to add relative risk columns

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(USUBJID, all_of(c(popfl, trtvar)), SEX, AGEGR1, RACE, ETHNIC)


adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs", ctrl_grp))

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)
ref_path <- c("colspan_trt", " ", trtvar, ctrl_grp)

### for analysis of treatment emergent flag, do not use TRTEMFL as filter, as this will not give the proper denominator

if (over_time) {
  ## Version 1 : over time
  filtered_advs_1 <- pharmaverseadamjnj::advs %>%
    filter(PARAMCD %in% selparamcd) %>%
    filter(AVISIT %in% selvisit) %>%
    filter(ANL02FL == "Y") %>%
    ### note regarding ONTRTFL --- Per agreement on June 17 : On treatment over time : Filter on ONTRTFL as well
    ###
    filter(ONTRTFL == "Y") %>%
    select(
      STUDYID,
      USUBJID,
      PARAMCD,
      PARAM,
      AVALCAT1,
      AVALCA1N,
      AVISIT,
      ONTRTFL,
      APOBLFL,
      CRIT1,
      CRIT1FL,
      CRIT2,
      CRIT2FL,
      TRTEMFL,
      ANL02FL,
      AVAL
    ) %>%
    inner_join(adsl)
}

if (worst) {
  ## Version 2 : "worst analysis" -- ANL03FL (max) ANL06FL (min)

  ### note: by filter ANL06FL/ANL03FL, this table is restricted to On-treatment values, per definition of ANL06FL/ANL03FL
  ### therefor, no need to add ONTRTFL in filter
  ### if derivation of ANL06FL is not restricted to ONTRTFL records, adding ONTRTFL here will not give the correct answer either
  ### as mixing worst with other period is not giving the proper selection !!!

  filtered_advs_2 <- pharmaverseadamjnj::advs %>%
    filter(PARAMCD %in% selparamcd) %>%
    # 2 records per subject selected : min (ANL06) / max (ANL03)
    filter(ANL03FL == "Y" | ANL06FL == "Y") %>%
    select(
      STUDYID,
      USUBJID,
      PARAMCD,
      PARAM,
      AVALCAT1,
      AVALCA1N,
      AVISIT,
      APOBLFL,
      CRIT1,
      CRIT1FL,
      CRIT2,
      CRIT2FL,
      TRTEMFL,
      ANL03FL,
      ANL06FL,
      AVAL
    ) %>%
    inner_join(adsl)

  ### need to check for your study if the below applies as these can be study specific
  ## for CRIT1 : use minimum (ANL06FL) - disregard the record if it was not coming from MIN
  ## for CRIT2 : use maximum (ANL03FL) - disregard the record if it was not coming from MAX
  ## 1 record per subjects with non-missing CRIT1FL
  ## 1 record per subjects with non-missing CRIT2FL
  ## these will be over 2 different records
  filtered_advs_2 <- filtered_advs_2 %>%
    mutate(
      CRIT1FL = case_when(
        ANL06FL == "N" ~ NA,
        TRUE ~ CRIT1FL
      ),
      CRIT2FL = case_when(
        ANL03FL == "N" ~ NA,
        TRUE ~ CRIT2FL
      )
    ) %>%
    mutate(AVISIT = "On-treatment")
}


if (over_time & worst) {
  filtered_advs <- bind_rows(
    filtered_advs_1,
    filtered_advs_2
  )

  filtered_advs$AVISIT <- factor(
    as.character(filtered_advs$AVISIT),
    levels = c("On-treatment", levels(filtered_advs_1$AVISIT))
  )
} else if (over_time) {
  filtered_advs <- filtered_advs_1
} else if (worst) {
  filtered_advs <- filtered_advs_2
} else {
  stop("At least worst or over_time should be set to TRUE")
}

filtered_advs$PARAM <- factor(
  as.character(filtered_advs$PARAM),
  levels = sel_param,
  labels = sel_param_case
)

### for analysis of treatment emergent abnormalities only :
### per discussion with DAS team: denominator is still the subjects with evaluation of CRIT1FL/CRIT2FL,
### there is no need to get baseline status to exclude subjects with an abnormal baseline status
### the only thing that should be done is : non-treatment emergent abnormalities should not be reported in the numerator, only in denom
### this can be done using the following code

if (treatment_emergent) {
  filtered_advs <- filtered_advs %>%
    mutate(
      CRIT1FL = case_when(
        CRIT1FL == "Y" & (is.na(TRTEMFL) | TRTEMFL != "Y") ~ "N",
        TRUE ~ CRIT1FL
      ),
      CRIT2FL = case_when(
        CRIT2FL == "Y" & (is.na(TRTEMFL) | TRTEMFL != "Y") ~ "N",
        TRUE ~ CRIT2FL
      )
    )
}


filtered_advs <- var_relabel(filtered_advs, PARAM = "Blood Pressure (mmHg)")


### Mapping for CRIT1&CRIT2
### alternative approach to retrieve from metadata iso dataset -
xlabel_map <- unique(filtered_advs %>% select(PARAM, CRIT1, CRIT2)) %>%
  tidyr::pivot_longer(
    cols = c("CRIT1", "CRIT2"),
    names_to = "var",
    values_to = "label"
  ) %>%
  filter(!is.na(label)) %>%
  mutate(
    label = as.character(label),
    var = paste0(var, "FL"),
    value = "Y"
  )

# Define layout and build table:

extra_args_rr <- list(
  method = "wald",
  denom = "n_df",
  ref_path = ref_path,
  .stats = c("count_unique_fraction")
)


lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(trtvar)


if (relrisk) {
  lyt <- lyt %>%
    split_cols_by("rrisk_header", nested = FALSE) %>%
    split_cols_by(
      trtvar,
      labels_var = "rrisk_label",
      split_fun = remove_split_levels(ctrl_grp)
    )
}

if (over_time) {
  lyt <- lyt %>%
    split_rows_by(
      "AVISIT",
      label_pos = "topleft",
      child_labels = "visible",
      split_label = "Study Visit",
      split_fun = drop_split_levels,
      section_div = " "
    )
}

lyt <- lyt %>%
  split_rows_by(
    "PARAM",
    label_pos = "topleft",
    child_labels = "visible",
    split_label = "Parameter",
    split_fun = drop_split_levels,
    section_div = " "
  ) %>%
  analyze(
    "CRIT1FL",
    a_freq_j,
    show_labels = "hidden",
    table_names = "CRIT1_N",
    extra_args = list(denom = "n_df", .stats = c("n_df"))
  ) %>%
  analyze(
    c("CRIT1FL", "CRIT2FL"),
    a_freq_j,
    extra_args = append(
      extra_args_rr,
      list(val = c("Y"), label_map = xlabel_map)
    ),
    show_labels = "hidden",
    indent_mod = 1L
  ) %>%
  append_topleft("   Criteria, n (%)")


result <- build_table(lyt, filtered_advs, alt_counts_df = adsl)

# Post-Processing:

result <- remove_col_count(result)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)

TSFVIT05: Subjects With On-treatment Clinically Important Vital Signs [Over Time]; Safety Analysis Set (Study jjcs - core)

Study Visit

Active Study Agent

Parameter

Xanomeline High Dose

Xanomeline Low Dose

Placebo

Criteria, n (%)

N=53

N=73

N=59

On-treatment

Pulse rate (beats/min)

N

53

71

58

<50 bpm and with >20
 bpm decrease from
 baseline

0

1 (1.4%)

0

>120 bpm and with >30
 bpm increase from
 baseline

0

0

0

Systolic blood pressure
 (mmHg)

N

53

71

58

<90 mmHg and with >30
 mmHg decrease from
 baseline

0

0

1 (1.7%)

>180 mmHg and with
 >40 mmHg increase
 from baseline

0

0

1 (1.7%)

Diastolic blood pressure
 (mmHg)

N

53

71

58

<50 mmHg and with >20
 mmHg decrease from
 baseline

0

0

0

>105 mmHg and with
 >30 mmHg increase
 from baseline

0

0

0

Cycle 02

Pulse rate (beats/min)

N

53

71

58

<50 bpm and with >20
 bpm decrease from
 baseline

0

0

0

>120 bpm and with >30
 bpm increase from
 baseline

0

0

0

Systolic blood pressure
 (mmHg)

N

53

71

58

<90 mmHg and with >30
 mmHg decrease from
 baseline

0

0

0

>180 mmHg and with
 >40 mmHg increase
 from baseline

0

0

0

Diastolic blood pressure
 (mmHg)

N

53

71

58

<50 mmHg and with >20
 mmHg decrease from
 baseline

0

0

0

>105 mmHg and with
 >30 mmHg increase
 from baseline

0

0

0

Cycle 04

Pulse rate (beats/min)

N

51

47

51

<50 bpm and with >20
 bpm decrease from
 baseline

0

0

0

>120 bpm and with >30
 bpm increase from
 baseline

0

0

0

Systolic blood pressure
 (mmHg)

N

51

47

51

<90 mmHg and with >30
 mmHg decrease from
 baseline

0

0

0

>180 mmHg and with
 >40 mmHg increase
 from baseline

0

0

0

Diastolic blood pressure
 (mmHg)

N

51

47

51

<50 mmHg and with >20
 mmHg decrease from
 baseline

0

0

0

>105 mmHg and with
 >30 mmHg increase
 from baseline

0

0

0

Note: Clinically important vital signs are defined in the Statistical Analysis Plan. N is the number of subjects with at least 1 postbaseline value for the specified vital sign parameter.

Note: On-treatment is defined as values obtained after the first dose and within [30 days] following treatment discontinuation. [Only treatment-emergent values (those that worsened from baseline) are presented.]

Download RTF file

TSFVIT04
TSFVIT06
Source Code
---
title: TSFVIT05
subtitle: Subjects With On-treatment Clinically Important Vital Signs Over Time
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsfvit05

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSFVIT05"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

popfl <- "SAFFL"
trtvar <- "TRT01A"
ctrl_grp <- "Placebo"

selparamcd <- c("PULSE", "SYSBP", "DIABP")

selvisit <- c("Cycle 02", "Cycle 04")

### as in dataset, order is important for later processing
### not automated, hard coded approach for ease of reading
### ideally the datasets already contain the appropriate case, to ensure units are in proper case
sel_param <- c(
  "Pulse Rate (beats/min)",
  "Systolic Blood Pressure (mmHg)",
  "Diastolic Blood Pressure (mmHg)"
)
sel_param_case <- c(
  "Pulse rate (beats/min)",
  "Systolic blood pressure (mmHg)",
  "Diastolic blood pressure (mmHg)"
)

## different variants of table
over_time <- TRUE # over time analysis, ALSO restricted to on-treatment records
worst <- TRUE # analysis of min/max value, restricted to on-treatment records
## you can set both worst and over_time to TRUE, the "worst" timepoint will be shown first
treatment_emergent <- FALSE # only consider te values

relrisk <- FALSE
# by default JJCS there is no need to add relative risk columns

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(USUBJID, all_of(c(popfl, trtvar)), SEX, AGEGR1, RACE, ETHNIC)


adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs", ctrl_grp))

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)
ref_path <- c("colspan_trt", " ", trtvar, ctrl_grp)

### for analysis of treatment emergent flag, do not use TRTEMFL as filter, as this will not give the proper denominator

if (over_time) {
  ## Version 1 : over time
  filtered_advs_1 <- pharmaverseadamjnj::advs %>%
    filter(PARAMCD %in% selparamcd) %>%
    filter(AVISIT %in% selvisit) %>%
    filter(ANL02FL == "Y") %>%
    ### note regarding ONTRTFL --- Per agreement on June 17 : On treatment over time : Filter on ONTRTFL as well
    ###
    filter(ONTRTFL == "Y") %>%
    select(
      STUDYID,
      USUBJID,
      PARAMCD,
      PARAM,
      AVALCAT1,
      AVALCA1N,
      AVISIT,
      ONTRTFL,
      APOBLFL,
      CRIT1,
      CRIT1FL,
      CRIT2,
      CRIT2FL,
      TRTEMFL,
      ANL02FL,
      AVAL
    ) %>%
    inner_join(adsl)
}

if (worst) {
  ## Version 2 : "worst analysis" -- ANL03FL (max) ANL06FL (min)

  ### note: by filter ANL06FL/ANL03FL, this table is restricted to On-treatment values, per definition of ANL06FL/ANL03FL
  ### therefor, no need to add ONTRTFL in filter
  ### if derivation of ANL06FL is not restricted to ONTRTFL records, adding ONTRTFL here will not give the correct answer either
  ### as mixing worst with other period is not giving the proper selection !!!

  filtered_advs_2 <- pharmaverseadamjnj::advs %>%
    filter(PARAMCD %in% selparamcd) %>%
    # 2 records per subject selected : min (ANL06) / max (ANL03)
    filter(ANL03FL == "Y" | ANL06FL == "Y") %>%
    select(
      STUDYID,
      USUBJID,
      PARAMCD,
      PARAM,
      AVALCAT1,
      AVALCA1N,
      AVISIT,
      APOBLFL,
      CRIT1,
      CRIT1FL,
      CRIT2,
      CRIT2FL,
      TRTEMFL,
      ANL03FL,
      ANL06FL,
      AVAL
    ) %>%
    inner_join(adsl)

  ### need to check for your study if the below applies as these can be study specific
  ## for CRIT1 : use minimum (ANL06FL) - disregard the record if it was not coming from MIN
  ## for CRIT2 : use maximum (ANL03FL) - disregard the record if it was not coming from MAX
  ## 1 record per subjects with non-missing CRIT1FL
  ## 1 record per subjects with non-missing CRIT2FL
  ## these will be over 2 different records
  filtered_advs_2 <- filtered_advs_2 %>%
    mutate(
      CRIT1FL = case_when(
        ANL06FL == "N" ~ NA,
        TRUE ~ CRIT1FL
      ),
      CRIT2FL = case_when(
        ANL03FL == "N" ~ NA,
        TRUE ~ CRIT2FL
      )
    ) %>%
    mutate(AVISIT = "On-treatment")
}


if (over_time & worst) {
  filtered_advs <- bind_rows(
    filtered_advs_1,
    filtered_advs_2
  )

  filtered_advs$AVISIT <- factor(
    as.character(filtered_advs$AVISIT),
    levels = c("On-treatment", levels(filtered_advs_1$AVISIT))
  )
} else if (over_time) {
  filtered_advs <- filtered_advs_1
} else if (worst) {
  filtered_advs <- filtered_advs_2
} else {
  stop("At least worst or over_time should be set to TRUE")
}

filtered_advs$PARAM <- factor(
  as.character(filtered_advs$PARAM),
  levels = sel_param,
  labels = sel_param_case
)

### for analysis of treatment emergent abnormalities only :
### per discussion with DAS team: denominator is still the subjects with evaluation of CRIT1FL/CRIT2FL,
### there is no need to get baseline status to exclude subjects with an abnormal baseline status
### the only thing that should be done is : non-treatment emergent abnormalities should not be reported in the numerator, only in denom
### this can be done using the following code

if (treatment_emergent) {
  filtered_advs <- filtered_advs %>%
    mutate(
      CRIT1FL = case_when(
        CRIT1FL == "Y" & (is.na(TRTEMFL) | TRTEMFL != "Y") ~ "N",
        TRUE ~ CRIT1FL
      ),
      CRIT2FL = case_when(
        CRIT2FL == "Y" & (is.na(TRTEMFL) | TRTEMFL != "Y") ~ "N",
        TRUE ~ CRIT2FL
      )
    )
}


filtered_advs <- var_relabel(filtered_advs, PARAM = "Blood Pressure (mmHg)")


### Mapping for CRIT1&CRIT2
### alternative approach to retrieve from metadata iso dataset -
xlabel_map <- unique(filtered_advs %>% select(PARAM, CRIT1, CRIT2)) %>%
  tidyr::pivot_longer(
    cols = c("CRIT1", "CRIT2"),
    names_to = "var",
    values_to = "label"
  ) %>%
  filter(!is.na(label)) %>%
  mutate(
    label = as.character(label),
    var = paste0(var, "FL"),
    value = "Y"
  )

# Define layout and build table:

extra_args_rr <- list(
  method = "wald",
  denom = "n_df",
  ref_path = ref_path,
  .stats = c("count_unique_fraction")
)


lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(trtvar)


if (relrisk) {
  lyt <- lyt %>%
    split_cols_by("rrisk_header", nested = FALSE) %>%
    split_cols_by(
      trtvar,
      labels_var = "rrisk_label",
      split_fun = remove_split_levels(ctrl_grp)
    )
}

if (over_time) {
  lyt <- lyt %>%
    split_rows_by(
      "AVISIT",
      label_pos = "topleft",
      child_labels = "visible",
      split_label = "Study Visit",
      split_fun = drop_split_levels,
      section_div = " "
    )
}

lyt <- lyt %>%
  split_rows_by(
    "PARAM",
    label_pos = "topleft",
    child_labels = "visible",
    split_label = "Parameter",
    split_fun = drop_split_levels,
    section_div = " "
  ) %>%
  analyze(
    "CRIT1FL",
    a_freq_j,
    show_labels = "hidden",
    table_names = "CRIT1_N",
    extra_args = list(denom = "n_df", .stats = c("n_df"))
  ) %>%
  analyze(
    c("CRIT1FL", "CRIT2FL"),
    a_freq_j,
    extra_args = append(
      extra_args_rr,
      list(val = c("Y"), label_map = xlabel_map)
    ),
    show_labels = "hidden",
    indent_mod = 1L
  ) %>%
  append_topleft("   Criteria, n (%)")


result <- build_table(lyt, filtered_advs, alt_counts_df = adsl)

# Post-Processing:

result <- remove_col_count(result)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences