TL Catalog
  1. Tables
  2. Demographic
  3. TSIDEM02
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Demographic
  3. TSIDEM02

TSIDEM02

Subjects by Region, Country/Territory, and Site


Output

  • Preview
Code
# Program Name:              tsidem02

# Prep environment:

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSIDEM02"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

popfls <- c("SAFFL", "ITTFL", "FASFL")
popfl <- popfls[1]
trtvar <- "TRT01P"
ctrl_grp <- "Placebo"

# Initial Read in of adsl dataset

adsl <- pharmaverseadamjnj::adsl

# Further script level parameters, after having read in main data

demog_vars <- c("REGION1", "COUNTRY", "SITEID")
## make it named vars so that demog_vars[xx] with xx subset of vars still works
names(demog_vars) <- demog_vars
## retrieve labels
demog_labels <- formatters::var_labels(adsl)[demog_vars]

### vars that have _decode version : use these instead of the original version
vars_decode <- paste0(demog_vars, "_DECODE")

demog_displ_vars <- tibble(orig = demog_vars, displ = vars_decode) %>%
  mutate(displ_exist = displ %in% names(adsl)) %>%
  mutate(finalvar = ifelse(displ_exist, displ, orig)) %>%
  pull(finalvar)

# Process data:

# filter and restrict to population of interest
adsl <- adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(
    USUBJID,
    starts_with("TRT01"),
    all_of(popfls),
    all_of(unique(c(demog_vars, demog_displ_vars)))
  )


adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

# to ensure alphabetical ordering, as COUNTRY_DECODE is factor with order according COUNTRY, which is alphabetical on 3-letter code
adsl$REGION1 <- factor(
  as.character(adsl$REGION1),
  levels = sort(unique(as.character(adsl$REGION1)))
)
adsl$COUNTRY_DECODE <- factor(
  as.character(adsl$COUNTRY_DECODE),
  levels = sort(unique(as.character(adsl$COUNTRY_DECODE)))
)

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

# Define layout and build table:

lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(trtvar) %>%
  add_overall_col("Total") %>%
  split_rows_by(
    "REGION1",
    split_label = "Region",
    split_fun = trim_levels_in_group("COUNTRY_DECODE"),
    label_pos = "topleft",
    section_div = " "
  ) %>%
  summarize_row_groups("REGION1") %>%
  split_rows_by(
    "COUNTRY_DECODE",
    split_label = "Country/Territory",
    split_fun = trim_levels_in_group("SITEID"),
    label_pos = "topleft",
    section_div = " "
  ) %>%
  summarize_row_groups("COUNTRY_DECODE") %>%
  analyze_vars("SITEID", denom = "N_col", .stats = c("count_fraction")) %>%
  append_topleft("    Site, n (%)")

result <- build_table(lyt, adsl)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table:

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)

TSIDEM02: Subjects by Region, Country/Territory, and Site; Full Analysis Set (Study jjcs - core)

Region

Active Study Agent

Country/Territory

Xanomeline High Dose

Xanomeline Low Dose

Placebo

Total

Site, n (%)

N=64

N=62

N=59

N=185

NA

64 (100.0%)

62 (100.0%)

59 (100.0%)

185 (100.0%)

United States of America

64 (100.0%)

62 (100.0%)

59 (100.0%)

185 (100.0%)

701

12 (18.8%)

12 (19.4%)

11 (18.6%)

35 (18.9%)

702

0

1 (1.6%)

0

1 (0.5%)

703

4 (6.2%)

5 (8.1%)

5 (8.5%)

14 (7.6%)

704

6 (9.4%)

7 (11.3%)

6 (10.2%)

19 (10.3%)

705

5 (7.8%)

3 (4.8%)

2 (3.4%)

10 (5.4%)

706

0

1 (1.6%)

0

1 (0.5%)

707

0

0

1 (1.7%)

1 (0.5%)

708

6 (9.4%)

6 (9.7%)

4 (6.8%)

16 (8.6%)

709

4 (6.2%)

5 (8.1%)

6 (10.2%)

15 (8.1%)

710

8 (12.5%)

7 (11.3%)

7 (11.9%)

22 (11.9%)

711

1 (1.6%)

1 (1.6%)

1 (1.7%)

3 (1.6%)

713

1 (1.6%)

2 (3.2%)

3 (5.1%)

6 (3.2%)

714

2 (3.1%)

2 (3.2%)

2 (3.4%)

6 (3.2%)

715

2 (3.1%)

2 (3.2%)

1 (1.7%)

5 (2.7%)

716

8 (12.5%)

4 (6.5%)

7 (11.9%)

19 (10.3%)

717

2 (3.1%)

1 (1.6%)

1 (1.7%)

4 (2.2%)

718

3 (4.7%)

3 (4.8%)

2 (3.4%)

8 (4.3%)

Download RTF file

TSIDEM01
TSIMH01
Source Code
---
title: TSIDEM02
subtitle: Subjects by Region, Country/Territory, and Site
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsidem02

# Prep environment:

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSIDEM02"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

popfls <- c("SAFFL", "ITTFL", "FASFL")
popfl <- popfls[1]
trtvar <- "TRT01P"
ctrl_grp <- "Placebo"

# Initial Read in of adsl dataset

adsl <- pharmaverseadamjnj::adsl

# Further script level parameters, after having read in main data

demog_vars <- c("REGION1", "COUNTRY", "SITEID")
## make it named vars so that demog_vars[xx] with xx subset of vars still works
names(demog_vars) <- demog_vars
## retrieve labels
demog_labels <- formatters::var_labels(adsl)[demog_vars]

### vars that have _decode version : use these instead of the original version
vars_decode <- paste0(demog_vars, "_DECODE")

demog_displ_vars <- tibble(orig = demog_vars, displ = vars_decode) %>%
  mutate(displ_exist = displ %in% names(adsl)) %>%
  mutate(finalvar = ifelse(displ_exist, displ, orig)) %>%
  pull(finalvar)

# Process data:

# filter and restrict to population of interest
adsl <- adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(
    USUBJID,
    starts_with("TRT01"),
    all_of(popfls),
    all_of(unique(c(demog_vars, demog_displ_vars)))
  )


adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

# to ensure alphabetical ordering, as COUNTRY_DECODE is factor with order according COUNTRY, which is alphabetical on 3-letter code
adsl$REGION1 <- factor(
  as.character(adsl$REGION1),
  levels = sort(unique(as.character(adsl$REGION1)))
)
adsl$COUNTRY_DECODE <- factor(
  as.character(adsl$COUNTRY_DECODE),
  levels = sort(unique(as.character(adsl$COUNTRY_DECODE)))
)

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

# Define layout and build table:

lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(trtvar) %>%
  add_overall_col("Total") %>%
  split_rows_by(
    "REGION1",
    split_label = "Region",
    split_fun = trim_levels_in_group("COUNTRY_DECODE"),
    label_pos = "topleft",
    section_div = " "
  ) %>%
  summarize_row_groups("REGION1") %>%
  split_rows_by(
    "COUNTRY_DECODE",
    split_label = "Country/Territory",
    split_fun = trim_levels_in_group("SITEID"),
    label_pos = "topleft",
    section_div = " "
  ) %>%
  summarize_row_groups("COUNTRY_DECODE") %>%
  analyze_vars("SITEID", denom = "N_col", .stats = c("count_fraction")) %>%
  append_topleft("    Site, n (%)")

result <- build_table(lyt, adsl)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table:

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences