TL Catalog
  1. Tables
  2. Electrocardiograms
  3. TSFECG05
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Electrocardiograms
  3. TSFECG05

TSFECG05

Subjects With ECG Values Outside Specified Limits Based on On-treatment Value and Over Time


Output

  • Preview
Code
# Program Name:              tsfecg05

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSFECG05"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

popfl <- "SAFFL"
trtvar <- "TRT01A"
ctrl_grp <- "Placebo"

ad_domain <- "adeg"

selvisit <- c(
  "Month 1",
  "Month 3",
  "Month 6",
  "Month 9",
  "Month 12",
  "Month 15",
  "Month 18",
  "Month 24"
)

selvisit <- c("Month 1", "Month 3")

catvar <- c("CRIT1", "CRIT2")

# initial read of data

adeg_complete <- pharmaverseadamjnj::adeg

## check parameters that have CRIT1,CRIT2 defined in data
levels_data <- unique(adeg_complete %>% select(PARAMCD, PARAM, CRIT1, CRIT2))

# restrict to these
selparamcd <- as.character(unique(
  levels_data %>% filter(!(is.na(CRIT1) | is.na(CRIT2))) %>% pull(PARAMCD)
))

## if the option TRTEMFL needs to be added to the TLF
trtemfl <- TRUE

# Mapping for CRIT1/2

xlabel_map <- levels_data %>%
  tidyr::pivot_longer(
    cols = c("CRIT1", "CRIT2"),
    names_to = "var",
    values_to = "label"
  ) %>%
  filter(!is.na(label)) %>%
  mutate(
    label = as.character(label),
    var = paste0(var, "FL"),
    value = "Y"
  )

#### Note: this is not in line with the markedly abnormal file
## for both EGHRMN & PRAG: crit1 and crit2 are reversed
## crit1 and crit2 on data are consistent with the order specified in the shell : low/high

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(USUBJID, all_of(c(trtvar, popfl)))

adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs", ctrl_grp))


adeg <- adeg_complete %>%
  filter(PARAMCD %in% selparamcd) %>%
  select(
    USUBJID,
    PARAM,
    PARAMCD,
    AVISIT,
    AVAL,
    CRIT1,
    CRIT1FL,
    CRIT2,
    CRIT2FL,
    starts_with("ANL") & ends_with("FL"),
    ONTRTFL,
    TRTEMFL,
    APOBLFL
  ) %>%
  inner_join(., adsl)

# filter data

### alert on trtemfl, do not apply it as a filter, as this would lead to incorrect denominators

adeg_crit_any <- unique(
  adeg %>%
    # synthetic data is missing the ANL04FL variable, however, this wouldn't be sufficient either, unless it flags both CRIT1 and CRIT2
    filter(ONTRTFL == "Y") %>%
    mutate(AVISIT = factor("On-treatment")) %>%
    select(-c(AVAL, ANL01FL, ANL02FL, ANL03FL))
)

### note: this does not necesarily leads to one record per parameter per subject
### if ANL04FL is available, we still can end up with more than one record
### a subject can have crit1fl=Y at one visit, and crit2fl=Y at another visit, and crit1fl=N&crit2fl=N at another
### as long as the analysis function deals with multiple records per subject correctly, this is not an issue

check_dup_sub <- adeg_crit_any %>%
  group_by(USUBJID, PARAMCD, AVISIT) %>%
  mutate(n_rec = n()) %>%
  filter(n_rec > 1)

# Over time is also restricted to on treatment value
adeg_crit_overtime <- adeg %>%
  filter(ANL02FL == "Y" & AVISIT %in% selvisit & ONTRTFL == "Y") %>%
  select(-c(AVAL, ANL01FL, ANL02FL, ANL03FL))

adeg_crit_comb <- rbind(adeg_crit_any, adeg_crit_overtime) %>%
  mutate(
    AVISIT = factor(
      as.character(AVISIT),
      levels = c("On-treatment", levels(adeg_crit_overtime$AVISIT))
    )
  ) %>%
  inner_join(., adsl)


#### DO NOT USE TRTEMFL = Y in filter, as this will remove subjects from both numerator and denominator
#### instead : set "CRIT2FL","CRIT1FL" to a non-reportable value (ie N) and keep in dataset
if (trtemfl) {
  adeg_crit_comb <- adeg_crit_comb %>%
    mutate(
      CRIT1FL = case_when(
        is.na(TRTEMFL) | TRTEMFL != "Y" ~ "N",
        TRUE ~ CRIT1FL
      ),
      CRIT2FL = case_when(
        is.na(TRTEMFL) | TRTEMFL != "Y" ~ "N",
        TRUE ~ CRIT2FL
      )
    )
}

adeg_crit_comb <- adeg_crit_comb %>%
  mutate(
    CRIT1FL = factor(CRIT1FL, levels = c("Y", "N")),
    CRIT2FL = factor(CRIT2FL, levels = c("Y", "N"))
  )

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

# Define layout and build table:

extra_args_rr1 <- list(method = "wald", denom = "n_df", .stats = c("n_df"))
extra_args_rr2 <- list(
  method = "wald",
  denom = "n_df",
  .stats = c("count_unique_fraction")
)

lyt <- basic_table(show_colcounts = TRUE, colcount_format = "N=xx") %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(
    trtvar
    # , split_fun = add_combo_levels(combodf)
  ) %>%
  # re-enable the below if relative risk columns are wanted
  # split_cols_by("rrisk_header", nested = FALSE) %>%
  # split_cols_by(trtvar, labels_var = "rrisk_label",
  #               split_fun = remove_split_levels(ctrl_grp)) %>%
  #
  split_rows_by(
    "PARAM",
    split_label = "Parameter",
    label_pos = "topleft",
    split_fun = drop_split_levels
  ) %>%
  split_rows_by(
    "AVISIT",
    split_label = "Study Visit",
    label_pos = "topleft",
    section_div = " ",
    split_fun = drop_split_levels
  ) %>%
  analyze(
    c("CRIT1"),
    a_freq_j,
    extra_args = extra_args_rr1,
    show_labels = "hidden",
    indent_mod = 0L
  ) %>%
  # denominators are varying per test, no need to show as N is shown in line above
  # revise order to first present low then high
  analyze(
    c("CRIT2FL", "CRIT1FL"),
    a_freq_j,
    extra_args = append(
      extra_args_rr2,
      list(
        val = c("Y"),
        label_map = xlabel_map
      )
    ),
    show_labels = "hidden",
    indent_mod = 1L
  ) %>%
  append_topleft("    Criteria, n (%)")

result <- build_table(lyt, adeg_crit_comb, alt_counts_df = adsl)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)

TSFECG05: Subjects With ECG Values Outside Specified Limits Based on On-treatment Value and Over Time; Safety Analysis Set (Study jjcs - core)

Parameter

Active Study Agent

Study Visit

Xanomeline High Dose

Xanomeline Low Dose

Placebo

Criteria, n (%)

N=53

N=73

N=59

ECG Mean Heart Rate
 (beats/min)

On-treatment

N

53

71

58

>100

53 (100.0%)

67 (100.0%)

57 (100.0%)

<50

25 (100.0%)

22 (100.0%)

24 (100.0%)

Month 1

N

53

71

58

>100

36 (100.0%)

57 (100.0%)

45 (100.0%)

<50

11 (100.0%)

6 (100.0%)

8 (100.0%)

Month 3

N

53

53

56

>100

42 (100.0%)

43 (100.0%)

45 (100.0%)

<50

7 (100.0%)

7 (100.0%)

3 (100.0%)

PR Interval, Aggregate (msec)

On-treatment

N

53

71

58

>200

53 (100.0%)

67 (100.0%)

54 (100.0%)

<120

34 (100.0%)

43 (100.0%)

47 (100.0%)

Month 1

N

53

71

58

>200

39 (100.0%)

46 (100.0%)

35 (100.0%)

<120

6 (100.0%)

17 (100.0%)

13 (100.0%)

Month 3

N

53

53

56

>200

34 (100.0%)

33 (100.0%)

33 (100.0%)

<120

9 (100.0%)

10 (100.0%)

14 (100.0%)

Note: On-treatment is defined as treatment-emergentECG values obtained after the first dose and within [30 days] following treatment discontinuation. [Treatment-emergent values are those that worsened from baseline.]

Note: Specified limits are defined in the Statistical Analysis Plan. N is the number of subjects with at least 1 postbaseline value for the specified ECG parameter.

Download RTF file

TSFECG04
TSIEX01
Source Code
---
title: TSFECG05
subtitle: Subjects With ECG Values Outside Specified Limits Based on On-treatment Value and Over Time
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsfecg05

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSFECG05"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

popfl <- "SAFFL"
trtvar <- "TRT01A"
ctrl_grp <- "Placebo"

ad_domain <- "adeg"

selvisit <- c(
  "Month 1",
  "Month 3",
  "Month 6",
  "Month 9",
  "Month 12",
  "Month 15",
  "Month 18",
  "Month 24"
)

selvisit <- c("Month 1", "Month 3")

catvar <- c("CRIT1", "CRIT2")

# initial read of data

adeg_complete <- pharmaverseadamjnj::adeg

## check parameters that have CRIT1,CRIT2 defined in data
levels_data <- unique(adeg_complete %>% select(PARAMCD, PARAM, CRIT1, CRIT2))

# restrict to these
selparamcd <- as.character(unique(
  levels_data %>% filter(!(is.na(CRIT1) | is.na(CRIT2))) %>% pull(PARAMCD)
))

## if the option TRTEMFL needs to be added to the TLF
trtemfl <- TRUE

# Mapping for CRIT1/2

xlabel_map <- levels_data %>%
  tidyr::pivot_longer(
    cols = c("CRIT1", "CRIT2"),
    names_to = "var",
    values_to = "label"
  ) %>%
  filter(!is.na(label)) %>%
  mutate(
    label = as.character(label),
    var = paste0(var, "FL"),
    value = "Y"
  )

#### Note: this is not in line with the markedly abnormal file
## for both EGHRMN & PRAG: crit1 and crit2 are reversed
## crit1 and crit2 on data are consistent with the order specified in the shell : low/high

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(USUBJID, all_of(c(trtvar, popfl)))

adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs", ctrl_grp))


adeg <- adeg_complete %>%
  filter(PARAMCD %in% selparamcd) %>%
  select(
    USUBJID,
    PARAM,
    PARAMCD,
    AVISIT,
    AVAL,
    CRIT1,
    CRIT1FL,
    CRIT2,
    CRIT2FL,
    starts_with("ANL") & ends_with("FL"),
    ONTRTFL,
    TRTEMFL,
    APOBLFL
  ) %>%
  inner_join(., adsl)

# filter data

### alert on trtemfl, do not apply it as a filter, as this would lead to incorrect denominators

adeg_crit_any <- unique(
  adeg %>%
    # synthetic data is missing the ANL04FL variable, however, this wouldn't be sufficient either, unless it flags both CRIT1 and CRIT2
    filter(ONTRTFL == "Y") %>%
    mutate(AVISIT = factor("On-treatment")) %>%
    select(-c(AVAL, ANL01FL, ANL02FL, ANL03FL))
)

### note: this does not necesarily leads to one record per parameter per subject
### if ANL04FL is available, we still can end up with more than one record
### a subject can have crit1fl=Y at one visit, and crit2fl=Y at another visit, and crit1fl=N&crit2fl=N at another
### as long as the analysis function deals with multiple records per subject correctly, this is not an issue

check_dup_sub <- adeg_crit_any %>%
  group_by(USUBJID, PARAMCD, AVISIT) %>%
  mutate(n_rec = n()) %>%
  filter(n_rec > 1)

# Over time is also restricted to on treatment value
adeg_crit_overtime <- adeg %>%
  filter(ANL02FL == "Y" & AVISIT %in% selvisit & ONTRTFL == "Y") %>%
  select(-c(AVAL, ANL01FL, ANL02FL, ANL03FL))

adeg_crit_comb <- rbind(adeg_crit_any, adeg_crit_overtime) %>%
  mutate(
    AVISIT = factor(
      as.character(AVISIT),
      levels = c("On-treatment", levels(adeg_crit_overtime$AVISIT))
    )
  ) %>%
  inner_join(., adsl)


#### DO NOT USE TRTEMFL = Y in filter, as this will remove subjects from both numerator and denominator
#### instead : set "CRIT2FL","CRIT1FL" to a non-reportable value (ie N) and keep in dataset
if (trtemfl) {
  adeg_crit_comb <- adeg_crit_comb %>%
    mutate(
      CRIT1FL = case_when(
        is.na(TRTEMFL) | TRTEMFL != "Y" ~ "N",
        TRUE ~ CRIT1FL
      ),
      CRIT2FL = case_when(
        is.na(TRTEMFL) | TRTEMFL != "Y" ~ "N",
        TRUE ~ CRIT2FL
      )
    )
}

adeg_crit_comb <- adeg_crit_comb %>%
  mutate(
    CRIT1FL = factor(CRIT1FL, levels = c("Y", "N")),
    CRIT2FL = factor(CRIT2FL, levels = c("Y", "N"))
  )

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

# Define layout and build table:

extra_args_rr1 <- list(method = "wald", denom = "n_df", .stats = c("n_df"))
extra_args_rr2 <- list(
  method = "wald",
  denom = "n_df",
  .stats = c("count_unique_fraction")
)

lyt <- basic_table(show_colcounts = TRUE, colcount_format = "N=xx") %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(
    trtvar
    # , split_fun = add_combo_levels(combodf)
  ) %>%
  # re-enable the below if relative risk columns are wanted
  # split_cols_by("rrisk_header", nested = FALSE) %>%
  # split_cols_by(trtvar, labels_var = "rrisk_label",
  #               split_fun = remove_split_levels(ctrl_grp)) %>%
  #
  split_rows_by(
    "PARAM",
    split_label = "Parameter",
    label_pos = "topleft",
    split_fun = drop_split_levels
  ) %>%
  split_rows_by(
    "AVISIT",
    split_label = "Study Visit",
    label_pos = "topleft",
    section_div = " ",
    split_fun = drop_split_levels
  ) %>%
  analyze(
    c("CRIT1"),
    a_freq_j,
    extra_args = extra_args_rr1,
    show_labels = "hidden",
    indent_mod = 0L
  ) %>%
  # denominators are varying per test, no need to show as N is shown in line above
  # revise order to first present low then high
  analyze(
    c("CRIT2FL", "CRIT1FL"),
    a_freq_j,
    extra_args = append(
      extra_args_rr2,
      list(
        val = c("Y"),
        label_map = xlabel_map
      )
    ),
    show_labels = "hidden",
    indent_mod = 1L
  ) %>%
  append_topleft("    Criteria, n (%)")

result <- build_table(lyt, adeg_crit_comb, alt_counts_df = adsl)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences