TL Catalog
  1. Tables
  2. Vital Signs and Physical Findings
  3. TSFVIT06
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Vital Signs and Physical Findings
  3. TSFVIT06

TSFVIT06

Subjects With Treatment-emergent Orthostatic Hypotension During Treatment Period


Output

  • Preview
Code
# Program Name:              tsfvit06

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSFVIT06"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

popfl <- "SAFFL"
trtvar <- "TRT01A"
ctrl_grp <- "Placebo"

# specify in the order you want to print on table
selparamcd <- c("ORTHYP", "DIABPO", "SYSBPO")

selparamcdN <- tibble(PARAMCD = selparamcd, PARAMCDN = seq_along(selparamcd))

### Per email June 12: DAS/SDS confirmed to NOT restrict to on-treatment values

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(USUBJID, all_of(c(popfl, trtvar)), SEX, AGEGR1, RACE, ETHNIC)


adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)


colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)
ref_path <- c("colspan_trt", " ", trtvar, ctrl_grp)

### N is the number of subjects with postbaseline orthostatic measurements and without orthostatic hypotension at baseline
## do not use TRTEMFL as filter, as this will only select AVALC = Y records per definition of TRTEMFL
## instead : start from post-baseline records and retain one record per subject
## for those subjects with both Y and N records, keep the Y record
## for those subjects with only Y records or only N records, keep one Y, N record respectively
filtered_advs <- pharmaverseadamjnj::advs %>%
  filter(PARAMCD %in% selparamcd & APOBLFL == "Y") %>%
  filter(PARAMCD %in% selparamcd) %>%
  mutate(
    AVALC = case_when(
      (PARAMCD == "SYSBPO" | PARAMCD == "DIABPO") & CRIT1FL == "Y" ~ "Y",
      (PARAMCD == "SYSBPO" | PARAMCD == "DIABPO") &
        (CRIT1FL == "N" |
          CRIT1FL == NA) ~ "N",
      PARAMCD == "ORTHYP" ~ AVALC
    ),
    PARAM = case_when(
      PARAMCD == "SYSBPO" ~ "SBP (STD-SUP) <-20",
      PARAMCD == "DIABPO" ~ "DBP (STD-SUP) <-10",
      PARAMCD == "ORTHYP" ~ PARAM
    )
  ) %>%
  select(
    STUDYID,
    USUBJID,
    PARAMCD,
    PARAM,
    AVALC,
    AVISIT,
    APOBLFL,
    TRTEMFL,
    ONTRTFL
  ) %>%
  inner_join(adsl) %>%
  ### ensure to keep only 1 result per subject, keep N only in case no Y was observed
  arrange(USUBJID, PARAMCD, AVALC) %>%
  group_by(USUBJID, PARAMCD) %>%
  mutate(navalc = n_distinct(AVALC)) %>%
  filter(!(navalc > 1 & AVALC == "N")) %>%
  ## only keep one record
  slice_head(n = 1) %>%
  ungroup()

#### remove subjects abnormal for "ORTHYP" at baseline
bl_abn_orthyp <- pharmaverseadamjnj::advs %>%
  filter(PARAMCD == "ORTHYP" & ABLFL == "Y" & AVALC == "Y")

### actually remove the subjects with AVALC = Y for ORTHYP
### N is the number of subjects with postbaseline orthostatic measurements and without orthostatic hypotension at baseline
filtered_advs <- filtered_advs %>%
  filter(!(USUBJID %in% unique(bl_abn_orthyp$USUBJID)))

### get sorting as per order in selparamcdN
selparamcdN <- selparamcdN %>%
  left_join(unique(filtered_advs %>% select(PARAMCD, PARAM))) %>%
  arrange(PARAMCDN)

param_levels <- unique(as.character(selparamcdN$PARAM))

filtered_advs$PARAM <- factor(
  as.character(filtered_advs$PARAM),
  levels = param_levels
)


### Mapping for AVALC
### alternative approach to retrieve from metadata iso dataset
xlabel_map <- unique(filtered_advs %>% select(PARAM, PARAMCD)) %>%
  mutate(
    value = "Y",
    label = as.character(PARAM)
  ) %>%
  mutate(
    label = case_when(
      label ==
        "Orthostatic Hypotension" ~ "Total number of subjects with orthostatic hypotension",
      TRUE ~ label
    )
  )

# Define layout and build table:

extra_args_rr <- list(
  method = "wald",
  denom = "n_df",
  ref_path = ref_path,
  .stats = c("count_unique_fraction")
)

lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(trtvar) %>%
  analyze(
    "AVALC",
    a_freq_j,
    show_labels = "hidden",
    table_names = "AVALC_N",
    extra_args = list(denom = "n_df", .stats = c("n_df"))
  ) %>%
  split_rows_by(
    "PARAM",
    label_pos = "topleft",
    split_fun = drop_split_levels,
    child_labels = "hidden",
    split_label = "Orthostatic hypotension, n (%)"
  ) %>%
  # as in shell, do not show denom in count/denom (%)
  ### indent will be fixed to 1, will be updated later in post-processing
  analyze(
    "AVALC",
    a_freq_j,
    extra_args = append(
      extra_args_rr,
      list(
        val = c("Y"),
        label_map = xlabel_map
      )
    ),
    indent_mod = 2L,
    show_labels = "hidden"
  )

result <- build_table(lyt, filtered_advs, alt_counts_df = adsl)

# Post-Processing:

## update indent for "SYSBPO" and "DIABPO"

adj_indent_mod <- function(result, path, indentupd) {
  indent_mod(tt_at_path(result, path)) <- indent_mod(tt_at_path(result, path)) +
    indentupd
  return(result)
}

result <- adj_indent_mod(
  result,
  path = c("PARAM", "Orthostatic Hypotension"),
  indentupd = -1L
)

result <- remove_col_count(result)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)

TSFVIT06: Subjects With Treatment-emergent Orthostatic Hypotension During [Treatment Period]; Safety Analysis Set (Study jjcs - core)

Active Study Agent

Xanomeline High Dose

Xanomeline Low Dose

Placebo

Orthostatic hypotension, n (%)

N=53

N=73

N=59

N

28

39

37

Total number of subjects with
 orthostatic hypotension

25 (89.3%)

33 (84.6%)

34 (91.9%)

DBP (STD-SUP) <-10

25 (89.3%)

28 (71.8%)

32 (86.5%)

SBP (STD-SUP) <-20

19 (67.9%)

20 (51.3%)

26 (70.3%)

Key: STD=standing, SUP=supine

Note: N is the number of subjects with postbaseline orthostatic measurements and without orthostatic hypotension at baseline. N includes subjects with missing baseline evaluation. Orthostatic hypotension is defined as an absolute decrease in systolic (>20 mmHg) or diastolic (>10 mmHg) blood pressure after standing for at least 2 minutes relative to supine position.

Download RTF file

TSFVIT05
LSFAE01
Source Code
---
title: TSFVIT06
subtitle: Subjects With Treatment-emergent Orthostatic Hypotension During Treatment Period
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsfvit06

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSFVIT06"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

popfl <- "SAFFL"
trtvar <- "TRT01A"
ctrl_grp <- "Placebo"

# specify in the order you want to print on table
selparamcd <- c("ORTHYP", "DIABPO", "SYSBPO")

selparamcdN <- tibble(PARAMCD = selparamcd, PARAMCDN = seq_along(selparamcd))

### Per email June 12: DAS/SDS confirmed to NOT restrict to on-treatment values

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(USUBJID, all_of(c(popfl, trtvar)), SEX, AGEGR1, RACE, ETHNIC)


adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)


colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)
ref_path <- c("colspan_trt", " ", trtvar, ctrl_grp)

### N is the number of subjects with postbaseline orthostatic measurements and without orthostatic hypotension at baseline
## do not use TRTEMFL as filter, as this will only select AVALC = Y records per definition of TRTEMFL
## instead : start from post-baseline records and retain one record per subject
## for those subjects with both Y and N records, keep the Y record
## for those subjects with only Y records or only N records, keep one Y, N record respectively
filtered_advs <- pharmaverseadamjnj::advs %>%
  filter(PARAMCD %in% selparamcd & APOBLFL == "Y") %>%
  filter(PARAMCD %in% selparamcd) %>%
  mutate(
    AVALC = case_when(
      (PARAMCD == "SYSBPO" | PARAMCD == "DIABPO") & CRIT1FL == "Y" ~ "Y",
      (PARAMCD == "SYSBPO" | PARAMCD == "DIABPO") &
        (CRIT1FL == "N" |
          CRIT1FL == NA) ~ "N",
      PARAMCD == "ORTHYP" ~ AVALC
    ),
    PARAM = case_when(
      PARAMCD == "SYSBPO" ~ "SBP (STD-SUP) <-20",
      PARAMCD == "DIABPO" ~ "DBP (STD-SUP) <-10",
      PARAMCD == "ORTHYP" ~ PARAM
    )
  ) %>%
  select(
    STUDYID,
    USUBJID,
    PARAMCD,
    PARAM,
    AVALC,
    AVISIT,
    APOBLFL,
    TRTEMFL,
    ONTRTFL
  ) %>%
  inner_join(adsl) %>%
  ### ensure to keep only 1 result per subject, keep N only in case no Y was observed
  arrange(USUBJID, PARAMCD, AVALC) %>%
  group_by(USUBJID, PARAMCD) %>%
  mutate(navalc = n_distinct(AVALC)) %>%
  filter(!(navalc > 1 & AVALC == "N")) %>%
  ## only keep one record
  slice_head(n = 1) %>%
  ungroup()

#### remove subjects abnormal for "ORTHYP" at baseline
bl_abn_orthyp <- pharmaverseadamjnj::advs %>%
  filter(PARAMCD == "ORTHYP" & ABLFL == "Y" & AVALC == "Y")

### actually remove the subjects with AVALC = Y for ORTHYP
### N is the number of subjects with postbaseline orthostatic measurements and without orthostatic hypotension at baseline
filtered_advs <- filtered_advs %>%
  filter(!(USUBJID %in% unique(bl_abn_orthyp$USUBJID)))

### get sorting as per order in selparamcdN
selparamcdN <- selparamcdN %>%
  left_join(unique(filtered_advs %>% select(PARAMCD, PARAM))) %>%
  arrange(PARAMCDN)

param_levels <- unique(as.character(selparamcdN$PARAM))

filtered_advs$PARAM <- factor(
  as.character(filtered_advs$PARAM),
  levels = param_levels
)


### Mapping for AVALC
### alternative approach to retrieve from metadata iso dataset
xlabel_map <- unique(filtered_advs %>% select(PARAM, PARAMCD)) %>%
  mutate(
    value = "Y",
    label = as.character(PARAM)
  ) %>%
  mutate(
    label = case_when(
      label ==
        "Orthostatic Hypotension" ~ "Total number of subjects with orthostatic hypotension",
      TRUE ~ label
    )
  )

# Define layout and build table:

extra_args_rr <- list(
  method = "wald",
  denom = "n_df",
  ref_path = ref_path,
  .stats = c("count_unique_fraction")
)

lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(trtvar) %>%
  analyze(
    "AVALC",
    a_freq_j,
    show_labels = "hidden",
    table_names = "AVALC_N",
    extra_args = list(denom = "n_df", .stats = c("n_df"))
  ) %>%
  split_rows_by(
    "PARAM",
    label_pos = "topleft",
    split_fun = drop_split_levels,
    child_labels = "hidden",
    split_label = "Orthostatic hypotension, n (%)"
  ) %>%
  # as in shell, do not show denom in count/denom (%)
  ### indent will be fixed to 1, will be updated later in post-processing
  analyze(
    "AVALC",
    a_freq_j,
    extra_args = append(
      extra_args_rr,
      list(
        val = c("Y"),
        label_map = xlabel_map
      )
    ),
    indent_mod = 2L,
    show_labels = "hidden"
  )

result <- build_table(lyt, filtered_advs, alt_counts_df = adsl)

# Post-Processing:

## update indent for "SYSBPO" and "DIABPO"

adj_indent_mod <- function(result, path, indentupd) {
  indent_mod(tt_at_path(result, path)) <- indent_mod(tt_at_path(result, path)) +
    indentupd
  return(result)
}

result <- adj_indent_mod(
  result,
  path = c("PARAM", "Orthostatic Hypotension"),
  indentupd = -1L
)

result <- remove_col_count(result)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences