TL Catalog
  1. Tables
  2. Adverse Events
  3. TSFAE20C
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Adverse Events
  3. TSFAE20C

TSFAE20C

Demographic Characteristics for Subjects With Treatment-emergent Adverse Events - OCMQ of Interest / Preferred Term of Interest


Output

  • Preview
Code
# Program Name:              tsfae20c.R

# Prep Environment

library(envsetup)
library(tern)
library(forcats)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSFAE20c"
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map
fileid <- tblid
popfl <- "SAFFL"
trtvar <- "TRT01A"
subjFilterText <- "Abdominal Pain"
varname <- "OCMQNAM"
ctrl_grp <- "Placebo"

# Process Data

adsl <- pharmaverseadamjnj::adsl %>%
  filter(!!rlang::sym(popfl) == "Y") %>%
  create_colspan_var(
    non_active_grp = "Placebo",
    non_active_grp_span_lbl = " ",
    active_grp_span_lbl = "Active Study Agent",
    colspan_var = "colspan_trt",
    trt_var = trtvar
  ) %>%
  select(
    USUBJID,
    !!rlang::sym(popfl),
    !!rlang::sym(trtvar),
    SEX_DECODE,
    AGEGR1,
    RACE_DECODE,
    ETHNIC_DECODE,
    colspan_trt
  )

# Factor reformatting (e.g., Include missing in the "Unknown" category).
adsl$SEX_DECODE <- forcats::fct_na_value_to_level(
  adsl$SEX_DECODE,
  level = "Unknown"
)

adsl$AGEGR1_DECODE <- forcats::fct_na_value_to_level(
  factor(stringr::str_replace(as.character(adsl$AGEGR1), ">=", "\u2265")),
  level = "Unknown"
)

adsl$RACE_DECODE <- forcats::fct_collapse(
  forcats::fct_na_value_to_level(adsl$RACE_DECODE, level = "Unknown"),
  "Not reported or unknown" = c("Not reported", "Unknown")
)

adsl$ETHNIC_DECODE <- forcats::fct_collapse(
  forcats::fct_na_value_to_level(adsl$ETHNIC_DECODE, level = "Unknown"),
  "Not reported or unknown" = c("Not reported", "Unknown")
)

had_ae <- pharmaverseadamjnj::adaeocmq %>%
  filter(TRTEMFL == "Y" & CQ01NAM == "Seizure") %>%
  select(USUBJID, TRTEMFL) %>%
  distinct(USUBJID, .keep_all = TRUE)

adsl <- adsl %>%
  left_join(had_ae) %>%
  mutate(TRTEMFL = ifelse(is.na(TRTEMFL), "N", "Y"))

# Define layout and build table

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)
ref_path <- c("colspan_trt", " ", trtvar, ctrl_grp)

add_active_combo <- make_split_fun(
  post = list(
    add_combo_facet(
      name = "Combined",
      label = "Combined",
      levels = c("Xanomeline High Dose", "Xanomeline Low Dose")
    ),
    cond_rm_facets(
      facets = "Combined",
      ancestor_pos = NA,
      value = " ",
      split = "colspan_trt"
    )
  )
)

extra_args_rr <- list(
  riskdiff = FALSE
)

extra_args_rr2 <- append(
  extra_args_rr,
  list(resp_var = "TRTEMFL", drop_levels = TRUE)
)

lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx",
  top_level_section_div = " "
) %>%
  append_topleft("Characteristic") %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(trtvar, split_fun = add_active_combo)

lyt <- lyt %>%
  analyze(
    "TRTEMFL",
    afun = a_freq_j,
    extra_args = append(
      extra_args_rr,
      list(
        label = paste("Subjects with >= 1", subjFilterText),
        val = "Y",
        .stats = c("count_unique_fraction")
      )
    ),
    show_labels = "hidden"
  ) %>%
  analyze(
    vars = "SEX_DECODE",
    var_labels = "Sex, n/Ns (%)",
    show_labels = "visible",
    afun = a_freq_resp_var_j,
    extra_args = extra_args_rr2,
    nested = FALSE
  ) %>%
  analyze(
    vars = "AGEGR1_DECODE",
    var_labels = "Age group (years), n/Ns (%)",
    show_labels = "visible",
    afun = a_freq_resp_var_j,
    extra_args = extra_args_rr2,
    nested = FALSE
  ) %>%
  analyze(
    vars = "RACE_DECODE",
    var_labels = "Race, n/Ns (%)",
    show_labels = "visible",
    afun = a_freq_resp_var_j,
    extra_args = extra_args_rr2,
    nested = FALSE
  ) %>%
  analyze(
    vars = "ETHNIC_DECODE",
    var_labels = "Ethnicity, n/Ns (%)",
    show_labels = "visible",
    afun = a_freq_resp_var_j,
    extra_args = extra_args_rr2,
    nested = FALSE
  )

result <- build_table(lyt, adsl)

# Post-Processing:

result <- safe_prune_table(result, prune_func = count_pruner())

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "landscape")

TSFAE20c: Demographic Characteristics for Subjects With Treatment-emergent Adverse Events - [FDA Medical Query of Interest / Preferred Term of Interest]; Safety Analysis Set (Study jjcs - core)

Active Study Agent

Xanomeline High Dose

Xanomeline Low Dose

Combined

Placebo

Characteristic

N=53

N=73

N=126

N=59

Subjects with ≥ 1 Abdominal
 Pain

46 (86.8%)

54 (74.0%)

100 (79.4%)

33 (55.9%)

Sex, n/Ns (%)

Male

28/29 (96.6%)

27/34 (79.4%)

55/63 (87.3%)

14/23 (60.9%)

Female

18/24 (75.0%)

27/39 (69.2%)

45/63 (71.4%)

19/36 (52.8%)

Age group (years), n/Ns (%)

≥18 to <65

7/8 (87.5%)

3/5 (60.0%)

10/13 (76.9%)

3/7 (42.9%)

≥65 to <75

12/16 (75.0%)

14/17 (82.4%)

26/33 (78.8%)

10/19 (52.6%)

≥75

27/29 (93.1%)

37/51 (72.5%)

64/80 (80.0%)

20/33 (60.6%)

Race, n/Ns (%)

American Indian or Alaska
 Native

5/5 (100.0%)

9/10 (90.0%)

14/15 (93.3%)

2/3 (66.7%)

Asian

9/10 (90.0%)

6/9 (66.7%)

15/19 (78.9%)

3/5 (60.0%)

Black or African American

3/3 (100.0%)

7/11 (63.6%)

10/14 (71.4%)

4/7 (57.1%)

Native Hawaiian or other
 Pacific Islander

6/7 (85.7%)

5/5 (100.0%)

11/12 (91.7%)

4/5 (80.0%)

White

7/8 (87.5%)

6/8 (75.0%)

13/16 (81.2%)

4/7 (57.1%)

Multiple

8/8 (100.0%)

7/10 (70.0%)

15/18 (83.3%)

1/5 (20.0%)

Not reported or unknown

7/11 (63.6%)

9/12 (75.0%)

16/23 (69.6%)

11/17 (64.7%)

Other

1/1 (100.0%)

5/8 (62.5%)

6/9 (66.7%)

4/10 (40.0%)

Ethnicity, n/Ns (%)

Hispanic or Latino

12/15 (80.0%)

12/15 (80.0%)

24/30 (80.0%)

6/12 (50.0%)

Not Hispanic or Latino

13/15 (86.7%)

12/18 (66.7%)

25/33 (75.8%)

10/16 (62.5%)

Not reported or unknown

21/23 (91.3%)

30/40 (75.0%)

51/63 (81.0%)

17/31 (54.8%)

Note: n=number of subjects with at least one event, Ns=total number of subjects for each specific subgroup

Download RTF file

TSFAE20B
TSFAE21A
Source Code
---
title: TSFAE20C
subtitle: Demographic Characteristics for Subjects With Treatment-emergent Adverse Events - OCMQ of Interest / Preferred Term of Interest
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsfae20c.R

# Prep Environment

library(envsetup)
library(tern)
library(forcats)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSFAE20c"
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map
fileid <- tblid
popfl <- "SAFFL"
trtvar <- "TRT01A"
subjFilterText <- "Abdominal Pain"
varname <- "OCMQNAM"
ctrl_grp <- "Placebo"

# Process Data

adsl <- pharmaverseadamjnj::adsl %>%
  filter(!!rlang::sym(popfl) == "Y") %>%
  create_colspan_var(
    non_active_grp = "Placebo",
    non_active_grp_span_lbl = " ",
    active_grp_span_lbl = "Active Study Agent",
    colspan_var = "colspan_trt",
    trt_var = trtvar
  ) %>%
  select(
    USUBJID,
    !!rlang::sym(popfl),
    !!rlang::sym(trtvar),
    SEX_DECODE,
    AGEGR1,
    RACE_DECODE,
    ETHNIC_DECODE,
    colspan_trt
  )

# Factor reformatting (e.g., Include missing in the "Unknown" category).
adsl$SEX_DECODE <- forcats::fct_na_value_to_level(
  adsl$SEX_DECODE,
  level = "Unknown"
)

adsl$AGEGR1_DECODE <- forcats::fct_na_value_to_level(
  factor(stringr::str_replace(as.character(adsl$AGEGR1), ">=", "\u2265")),
  level = "Unknown"
)

adsl$RACE_DECODE <- forcats::fct_collapse(
  forcats::fct_na_value_to_level(adsl$RACE_DECODE, level = "Unknown"),
  "Not reported or unknown" = c("Not reported", "Unknown")
)

adsl$ETHNIC_DECODE <- forcats::fct_collapse(
  forcats::fct_na_value_to_level(adsl$ETHNIC_DECODE, level = "Unknown"),
  "Not reported or unknown" = c("Not reported", "Unknown")
)

had_ae <- pharmaverseadamjnj::adaeocmq %>%
  filter(TRTEMFL == "Y" & CQ01NAM == "Seizure") %>%
  select(USUBJID, TRTEMFL) %>%
  distinct(USUBJID, .keep_all = TRUE)

adsl <- adsl %>%
  left_join(had_ae) %>%
  mutate(TRTEMFL = ifelse(is.na(TRTEMFL), "N", "Y"))

# Define layout and build table

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)
ref_path <- c("colspan_trt", " ", trtvar, ctrl_grp)

add_active_combo <- make_split_fun(
  post = list(
    add_combo_facet(
      name = "Combined",
      label = "Combined",
      levels = c("Xanomeline High Dose", "Xanomeline Low Dose")
    ),
    cond_rm_facets(
      facets = "Combined",
      ancestor_pos = NA,
      value = " ",
      split = "colspan_trt"
    )
  )
)

extra_args_rr <- list(
  riskdiff = FALSE
)

extra_args_rr2 <- append(
  extra_args_rr,
  list(resp_var = "TRTEMFL", drop_levels = TRUE)
)

lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx",
  top_level_section_div = " "
) %>%
  append_topleft("Characteristic") %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(trtvar, split_fun = add_active_combo)

lyt <- lyt %>%
  analyze(
    "TRTEMFL",
    afun = a_freq_j,
    extra_args = append(
      extra_args_rr,
      list(
        label = paste("Subjects with >= 1", subjFilterText),
        val = "Y",
        .stats = c("count_unique_fraction")
      )
    ),
    show_labels = "hidden"
  ) %>%
  analyze(
    vars = "SEX_DECODE",
    var_labels = "Sex, n/Ns (%)",
    show_labels = "visible",
    afun = a_freq_resp_var_j,
    extra_args = extra_args_rr2,
    nested = FALSE
  ) %>%
  analyze(
    vars = "AGEGR1_DECODE",
    var_labels = "Age group (years), n/Ns (%)",
    show_labels = "visible",
    afun = a_freq_resp_var_j,
    extra_args = extra_args_rr2,
    nested = FALSE
  ) %>%
  analyze(
    vars = "RACE_DECODE",
    var_labels = "Race, n/Ns (%)",
    show_labels = "visible",
    afun = a_freq_resp_var_j,
    extra_args = extra_args_rr2,
    nested = FALSE
  ) %>%
  analyze(
    vars = "ETHNIC_DECODE",
    var_labels = "Ethnicity, n/Ns (%)",
    show_labels = "visible",
    afun = a_freq_resp_var_j,
    extra_args = extra_args_rr2,
    nested = FALSE
  )

result <- build_table(lyt, adsl)

# Post-Processing:

result <- safe_prune_table(result, prune_func = count_pruner())

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "landscape")
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences