TL Catalog
  1. Tables
  2. Adverse Events
  3. TSFAE19D
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Adverse Events
  3. TSFAE19D

TSFAE19D

Subjects With Treatment-emergent Adverse Events by Female-specific OCMQ (Narrow) / (Broad) and Preferred Term


Output

  • Preview
Code
# Program Name:              tsfae19d.R

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

# - Define output ID and file location

tblid <- "TSFAE19d"
fileid <- tblid
tab_titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

trtvar <- "TRT01A"
popfl <- "SAFFL"
sex <- "F"
ocmqclass <- "Broad"
ocmqflag <- "GENSPFFL"
ocmqnam_list <- c(
  "Abnormal Uterine Bleeding",
  "Amenorrhea",
  "Bacterial Vaginosis",
  "Decreased Menstrual Bleeding",
  "Excessive Menstrual Bleeding"
)
combined_colspan_trt <- FALSE
risk_diff <- TRUE
rr_method <- "wald"
ctrl_grp <- "Placebo"

if (combined_colspan_trt == TRUE) {
  # Set up levels and label for the required combined columns
  add_combo <- add_combo_facet(
    "Combined",
    label = "Combined",
    levels = c("Xanomeline High Dose", "Xanomeline Low Dose")
  )

  # choose if any facets need to be removed - e.g remove the combined column for placebo
  rm_combo_from_placebo <- cond_rm_facets(
    facets = "Combined",
    ancestor_pos = NA,
    value = " ",
    split = "colspan_trt"
  )

  mysplit <- make_split_fun(post = list(add_combo, rm_combo_from_placebo))
}

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(!!rlang::sym(popfl) == "Y" & SEX == sex) %>%
  select(STUDYID, USUBJID, all_of(trtvar), all_of(popfl))

adae <- pharmaverseadamjnj::adaeocmq %>%
  filter(
    TRTEMFL == "Y" & OCMQCLSS == ocmqclass & (!!rlang::sym(ocmqflag) == "Y")
  ) %>%
  select(USUBJID, TRTEMFL, OCMQNAM, AEDECOD, !!rlang::sym(ocmqflag)) %>%
  mutate(
    OCMQNAM = factor(OCMQNAM, levels = union(levels(OCMQNAM), ocmqnam_list)),
  )

adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == "Placebo", " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

if (risk_diff == TRUE) {
  adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
  ### to avoid problems with level of trtvar not observed in main domain
  adsl$rrisk_label <- factor(
    paste(adsl[[trtvar]], paste("vs", ctrl_grp)),
    levels = paste(levels(adsl[[trtvar]]), paste("vs", ctrl_grp))
  )
}

# join data together
adae <- adae %>% inner_join(., adsl, by = intersect(names(adae), names(adsl)))

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

# Define layout and build table:

# new approach to prevent label problems when treatment group not available in domain dataset
ctrl_grp2 <- paste(ctrl_grp, "vs", ctrl_grp)
ref_path <- c("colspan_trt", " ", "rrisk_label", ctrl_grp2)
extra_args_rr <- list(
  method = rr_method,
  ref_path = ref_path,
  .stats = c("count_unique_fraction")
)

lyt <- basic_table(
  top_level_section_div = " ",
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  )

if (combined_colspan_trt == TRUE) {
  lyt <- lyt %>%
    split_cols_by(trtvar, split_fun = mysplit)
} else {
  lyt <- lyt %>%
    split_cols_by(trtvar)
}

if (risk_diff == TRUE) {
  lyt <- lyt %>%
    split_cols_by("rrisk_header", nested = FALSE) %>%
    # split_cols_by(trtvar, labels_var = "rrisk_label", split_fun = remove_split_levels("Placebo"))
    ### do not use labels_var, but rrisk_label as variable
    ### note updated level in remove_split_levels
    split_cols_by("rrisk_label", split_fun = remove_split_levels(ctrl_grp2))
}

lyt <- lyt %>%
  split_rows_by(
    "OCMQNAM",
    split_label = paste0("OCMQ (", ocmqclass, ")"),
    split_fun = keep_split_levels(ocmqnam_list),
    label_pos = "topleft",
    section_div = c(" "),
    child_labels = "hidden",
    nested = FALSE
  ) %>%
  summarize_row_groups(
    "OCMQNAM",
    cfun = a_freq_j,
    extra_args = extra_args_rr
  ) %>%
  analyze(
    "AEDECOD",
    afun = a_freq_j,
    extra_args = c(extra_args_rr, list(drop_levels = TRUE))
  ) %>%
  append_topleft("  Preferred Term, n (%)")

result <- build_table(lyt, adae, alt_counts_df = adsl)

# If there is no data display "No data to display" text
if (nrow(adae) == 0) {
  result <- safe_prune_table(result)
}

# Post-Processing step to sort by descending count on chosen active treatment columns.

if (nrow(adae) != 0) {
  # result <- sort_at_path(result, c("OCMQNAM"), scorefun = jj_complex_scorefun())
  result <- sort_at_path(
    result,
    c("OCMQNAM", "*", "AEDECOD"),
    scorefun = jj_complex_scorefun()
  )
}

## note : perform this step after sorting, otherwise can result in errors (unable to find children AEDECOD)
## extra step : to remove lines with No data to report: note usage of trim_rows rather than prune_table
## this to ensure the content rows with empty levels are kept

prune_empty_level_tablerow <- function(tt) {
  if (is(tt, "ContentRow")) {
    return(FALSE)
  }
  if (is(tt, "TableRow")) {
    return(all_zero_or_na(tt))
  }
  kids <- tree_children(tt)
  length(kids) == 0
}

result <- result %>% trim_rows(prune_empty_level_tablerow)

## Remove the N=xx column headers for the risk difference columns
result <- remove_col_count(result)

# Add titles and footnotes:

result <- set_titles(result, tab_titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "landscape")

TSFAE19d: Subjects With Treatment-emergent Adverse Events by Female-specific FDA Medical Query (Broad) and Preferred Term; Female-specific Safety Analysis Set (Study jjcs - core)

Active Study Agent

Risk Difference (%) (95% CI)

OCMQ (Broad)

Xanomeline High Dose

Xanomeline Low Dose

Placebo

Xanomeline High Dose vs Placebo

Xanomeline Low Dose vs Placebo

Preferred Term, n (%)

N=24

N=39

N=36

Abnormal Uterine Bleeding

0

1 (2.6%)

1 (2.8%)

-2.8 (-8.1, 2.6)

-0.2 (-7.5, 7.1)

BLEEDING ANOVULATORY

0

1 (2.6%)

1 (2.8%)

-2.8 (-8.1, 2.6)

-0.2 (-7.5, 7.1)

Amenorrhea

0

0

0

0.0 (0.0, 0.0)

0.0 (0.0, 0.0)

Bacterial Vaginosis

0

0

0

0.0 (0.0, 0.0)

0.0 (0.0, 0.0)

Decreased Menstrual Bleeding

0

0

0

0.0 (0.0, 0.0)

0.0 (0.0, 0.0)

Excessive Menstrual Bleeding

0

0

0

0.0 (0.0, 0.0)

0.0 (0.0, 0.0)

Key: FMQ=FDA Medical Query

Note: Adverse events are coded using MedDRA version 26.0.

Download RTF file

TSFAE19C
TSFAE20A
Source Code
---
title: TSFAE19D
subtitle: Subjects With Treatment-emergent Adverse Events by Female-specific OCMQ (Narrow) / (Broad) and Preferred Term
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsfae19d.R

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

# - Define output ID and file location

tblid <- "TSFAE19d"
fileid <- tblid
tab_titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

trtvar <- "TRT01A"
popfl <- "SAFFL"
sex <- "F"
ocmqclass <- "Broad"
ocmqflag <- "GENSPFFL"
ocmqnam_list <- c(
  "Abnormal Uterine Bleeding",
  "Amenorrhea",
  "Bacterial Vaginosis",
  "Decreased Menstrual Bleeding",
  "Excessive Menstrual Bleeding"
)
combined_colspan_trt <- FALSE
risk_diff <- TRUE
rr_method <- "wald"
ctrl_grp <- "Placebo"

if (combined_colspan_trt == TRUE) {
  # Set up levels and label for the required combined columns
  add_combo <- add_combo_facet(
    "Combined",
    label = "Combined",
    levels = c("Xanomeline High Dose", "Xanomeline Low Dose")
  )

  # choose if any facets need to be removed - e.g remove the combined column for placebo
  rm_combo_from_placebo <- cond_rm_facets(
    facets = "Combined",
    ancestor_pos = NA,
    value = " ",
    split = "colspan_trt"
  )

  mysplit <- make_split_fun(post = list(add_combo, rm_combo_from_placebo))
}

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(!!rlang::sym(popfl) == "Y" & SEX == sex) %>%
  select(STUDYID, USUBJID, all_of(trtvar), all_of(popfl))

adae <- pharmaverseadamjnj::adaeocmq %>%
  filter(
    TRTEMFL == "Y" & OCMQCLSS == ocmqclass & (!!rlang::sym(ocmqflag) == "Y")
  ) %>%
  select(USUBJID, TRTEMFL, OCMQNAM, AEDECOD, !!rlang::sym(ocmqflag)) %>%
  mutate(
    OCMQNAM = factor(OCMQNAM, levels = union(levels(OCMQNAM), ocmqnam_list)),
  )

adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == "Placebo", " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

if (risk_diff == TRUE) {
  adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
  ### to avoid problems with level of trtvar not observed in main domain
  adsl$rrisk_label <- factor(
    paste(adsl[[trtvar]], paste("vs", ctrl_grp)),
    levels = paste(levels(adsl[[trtvar]]), paste("vs", ctrl_grp))
  )
}

# join data together
adae <- adae %>% inner_join(., adsl, by = intersect(names(adae), names(adsl)))

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

# Define layout and build table:

# new approach to prevent label problems when treatment group not available in domain dataset
ctrl_grp2 <- paste(ctrl_grp, "vs", ctrl_grp)
ref_path <- c("colspan_trt", " ", "rrisk_label", ctrl_grp2)
extra_args_rr <- list(
  method = rr_method,
  ref_path = ref_path,
  .stats = c("count_unique_fraction")
)

lyt <- basic_table(
  top_level_section_div = " ",
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  )

if (combined_colspan_trt == TRUE) {
  lyt <- lyt %>%
    split_cols_by(trtvar, split_fun = mysplit)
} else {
  lyt <- lyt %>%
    split_cols_by(trtvar)
}

if (risk_diff == TRUE) {
  lyt <- lyt %>%
    split_cols_by("rrisk_header", nested = FALSE) %>%
    # split_cols_by(trtvar, labels_var = "rrisk_label", split_fun = remove_split_levels("Placebo"))
    ### do not use labels_var, but rrisk_label as variable
    ### note updated level in remove_split_levels
    split_cols_by("rrisk_label", split_fun = remove_split_levels(ctrl_grp2))
}

lyt <- lyt %>%
  split_rows_by(
    "OCMQNAM",
    split_label = paste0("OCMQ (", ocmqclass, ")"),
    split_fun = keep_split_levels(ocmqnam_list),
    label_pos = "topleft",
    section_div = c(" "),
    child_labels = "hidden",
    nested = FALSE
  ) %>%
  summarize_row_groups(
    "OCMQNAM",
    cfun = a_freq_j,
    extra_args = extra_args_rr
  ) %>%
  analyze(
    "AEDECOD",
    afun = a_freq_j,
    extra_args = c(extra_args_rr, list(drop_levels = TRUE))
  ) %>%
  append_topleft("  Preferred Term, n (%)")

result <- build_table(lyt, adae, alt_counts_df = adsl)

# If there is no data display "No data to display" text
if (nrow(adae) == 0) {
  result <- safe_prune_table(result)
}

# Post-Processing step to sort by descending count on chosen active treatment columns.

if (nrow(adae) != 0) {
  # result <- sort_at_path(result, c("OCMQNAM"), scorefun = jj_complex_scorefun())
  result <- sort_at_path(
    result,
    c("OCMQNAM", "*", "AEDECOD"),
    scorefun = jj_complex_scorefun()
  )
}

## note : perform this step after sorting, otherwise can result in errors (unable to find children AEDECOD)
## extra step : to remove lines with No data to report: note usage of trim_rows rather than prune_table
## this to ensure the content rows with empty levels are kept

prune_empty_level_tablerow <- function(tt) {
  if (is(tt, "ContentRow")) {
    return(FALSE)
  }
  if (is(tt, "TableRow")) {
    return(all_zero_or_na(tt))
  }
  kids <- tree_children(tt)
  length(kids) == 0
}

result <- result %>% trim_rows(prune_empty_level_tablerow)

## Remove the N=xx column headers for the risk difference columns
result <- remove_col_count(result)

# Add titles and footnotes:

result <- set_titles(result, tab_titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "landscape")
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences