TL Catalog
  1. Tables
  2. Disposition of Subjects
  3. TSIDS01
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Disposition of Subjects
  3. TSIDS01

TSIDS01

Subject Screening and Enrollment


Output

  • Preview
Code
# Program Name:              tsids01.R

# Prep environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters

tblid <- "TSIDS01"
fileid <- tblid
tab_titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

# Process data

adsl <- pharmaverseadamjnj::adsl %>%
  filter(SCRNFL == "Y") %>%
  mutate(
    SCRNFL = with_label(.data[["SCRNFL"]] == "Y", "Patients screened"),
    SCRFFL = with_label(.data[["SCRFFL"]], "Screening failures"),
    RESCRNFL = with_label(.data[["RESCRNFL"]] == "Y", "Subjects re-screened"),
    ENRLFL = with_label(.data[["ENRLFL"]] == "Y", "Subjects enrolled"),
    RANDFL = with_label(.data[["RANDFL"]] == "Y", "Subjects randomized")
  ) %>%
  select(
    STUDYID,
    USUBJID,
    SCRNFL,
    SCRFFL,
    DCSCREEN,
    RESCRNFL,
    RANDFL,
    ENRLFL,
    TRT01P
  )

adsl_unq <- adsl %>%
  distinct(STUDYID, USUBJID, .keep_all = TRUE)

# Define layout and build table

lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx",
  top_level_section_div = " "
) %>%
  add_overall_col(label = "Total") %>%
  split_rows_by("SCRFFL", split_fun = keep_split_levels("Y")) %>%
  summarize_num_patients(
    var = "USUBJID",
    .stats = "unique",
    .formats = c("unique" = jjcsformat_count_fraction),
    .labels = c(unique = "Screening failures")
  ) %>%
  count_occurrences(
    vars = "DCSCREEN",
    drop = FALSE,
    .stats = "count_fraction_fixed_dp",
    .formats = c("count_fraction_fixed_dp" = jjcsformat_count_fraction)
  ) %>%
  count_patients_with_flags(
    var = "USUBJID",
    flag_variables = c("RESCRNFL"),
    nested = FALSE,
    .stats = "count"
  ) %>%
  count_patients_with_flags(
    var = "USUBJID",
    flag_variables = c("RANDFL"),
    nested = FALSE,
    .stats = "count_fraction",
    .formats = c("count_fraction" = jjcsformat_count_fraction)
  )

result <- build_table(lyt, df = adsl, alt_counts_df = adsl_unq)

# Post-processing

# Post-processing step to sort by descending count in the Combined column
result <- sort_at_path(
  tt = result,
  path = c("root", "SCRFFL", "Y", "DCSCREEN"),
  scorefun = jj_complex_scorefun(
    spanningheadercolvar = NULL,
    colpath = c("Total", "Total"),
    firstcat = NULL,
    lastcat = "Other"
  )
)

if (nrow(adsl) == 0) {
  # Post-processing step to remove table rows with all 0 or NA values
  result <- safe_prune_table(result, prune_func = prune_empty_level)
} else {
  # Post-processing step to remove reason for screening failures table rows
  # with all 0 or NA values
  result <- prune_table(
    result,
    prune_func = count_pruner(
      cat_exclude = c(
        "Screening failures"
      ),
      cols = "Total"
    )
  )
  result <- prune_table(
    result,
    prune_func = count_pruner(
      cat_exclude = c(
        "Subjects re-screened"
      ),
      cols = "Total"
    )
  )
  result <- prune_table(
    result,
    prune_func = count_pruner(
      cat_exclude = c(
        "Subjects randomized"
      ),
      cols = "Total"
    )
  )
}

# Retrieve titles and footnotes

result <- set_titles(result, tab_titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)

TSIDS01: Subject Screening and Enrollment; Screened Analysis Set (Study jjcs - core)

Total

N=306

Screening failures

52 (17.0%)

Failure to meet eligibility
 criteria

52 (17.0%)

Subjects re-screened

306

Subjects randomized

185 (60.5%)

Note: A subject that is re-screened is counted once for each screening.

Download RTF file

TSIMH01
TSIDS02
Source Code
---
title: TSIDS01
subtitle: Subject Screening and Enrollment
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsids01.R

# Prep environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters

tblid <- "TSIDS01"
fileid <- tblid
tab_titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

# Process data

adsl <- pharmaverseadamjnj::adsl %>%
  filter(SCRNFL == "Y") %>%
  mutate(
    SCRNFL = with_label(.data[["SCRNFL"]] == "Y", "Patients screened"),
    SCRFFL = with_label(.data[["SCRFFL"]], "Screening failures"),
    RESCRNFL = with_label(.data[["RESCRNFL"]] == "Y", "Subjects re-screened"),
    ENRLFL = with_label(.data[["ENRLFL"]] == "Y", "Subjects enrolled"),
    RANDFL = with_label(.data[["RANDFL"]] == "Y", "Subjects randomized")
  ) %>%
  select(
    STUDYID,
    USUBJID,
    SCRNFL,
    SCRFFL,
    DCSCREEN,
    RESCRNFL,
    RANDFL,
    ENRLFL,
    TRT01P
  )

adsl_unq <- adsl %>%
  distinct(STUDYID, USUBJID, .keep_all = TRUE)

# Define layout and build table

lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx",
  top_level_section_div = " "
) %>%
  add_overall_col(label = "Total") %>%
  split_rows_by("SCRFFL", split_fun = keep_split_levels("Y")) %>%
  summarize_num_patients(
    var = "USUBJID",
    .stats = "unique",
    .formats = c("unique" = jjcsformat_count_fraction),
    .labels = c(unique = "Screening failures")
  ) %>%
  count_occurrences(
    vars = "DCSCREEN",
    drop = FALSE,
    .stats = "count_fraction_fixed_dp",
    .formats = c("count_fraction_fixed_dp" = jjcsformat_count_fraction)
  ) %>%
  count_patients_with_flags(
    var = "USUBJID",
    flag_variables = c("RESCRNFL"),
    nested = FALSE,
    .stats = "count"
  ) %>%
  count_patients_with_flags(
    var = "USUBJID",
    flag_variables = c("RANDFL"),
    nested = FALSE,
    .stats = "count_fraction",
    .formats = c("count_fraction" = jjcsformat_count_fraction)
  )

result <- build_table(lyt, df = adsl, alt_counts_df = adsl_unq)

# Post-processing

# Post-processing step to sort by descending count in the Combined column
result <- sort_at_path(
  tt = result,
  path = c("root", "SCRFFL", "Y", "DCSCREEN"),
  scorefun = jj_complex_scorefun(
    spanningheadercolvar = NULL,
    colpath = c("Total", "Total"),
    firstcat = NULL,
    lastcat = "Other"
  )
)

if (nrow(adsl) == 0) {
  # Post-processing step to remove table rows with all 0 or NA values
  result <- safe_prune_table(result, prune_func = prune_empty_level)
} else {
  # Post-processing step to remove reason for screening failures table rows
  # with all 0 or NA values
  result <- prune_table(
    result,
    prune_func = count_pruner(
      cat_exclude = c(
        "Screening failures"
      ),
      cols = "Total"
    )
  )
  result <- prune_table(
    result,
    prune_func = count_pruner(
      cat_exclude = c(
        "Subjects re-screened"
      ),
      cols = "Total"
    )
  )
  result <- prune_table(
    result,
    prune_func = count_pruner(
      cat_exclude = c(
        "Subjects randomized"
      ),
      cols = "Total"
    )
  )
}

# Retrieve titles and footnotes

result <- set_titles(result, tab_titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences