---
title: TSFECG03
subtitle: Categorized Change From Baseline to Maximum On-treatment Corrected QT Interval
---
------------------------------------------------------------------------
{{< include ../../_utils/envir_hook.qmd >}}
```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"
# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")
Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)
dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")
aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")
###### Study specific updates (formerly in envre)
dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"
apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))
```
## Output
:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview
```{r variant1, results='hide', warning = FALSE, message = FALSE}
# Program Name: tsfecg03
# Prep Environment
library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)
# Define script level parameters:
tblid <- "TSFECG03"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map
popfl <- "SAFFL"
trtvar <- "TRT01A"
ctrl_grp <- "Placebo"
ad_domain <- "adeg"
selvisit <- c(
"Baseline",
"Month 1",
"Month 3",
"Month 6",
"Month 9",
"Month 12",
"Month 15",
"Month 18",
"Month 24"
)
## selection of QTC parameters
selparamcd <- c("QTCFAG", "QTCBAG", "QTCS", "QTCLAG")
# initial read of data
adeg_complete <- pharmaverseadamjnj::adeg
### available QTC parameters in study
selparamcd <- intersect(selparamcd, unique(adeg_complete$PARAMCD))
catvar <- "CHGCAT1"
## all parameters have the same levels for CHGCAT1 -- there is no need to create a map dataframe
# Process Data:
adsl <- pharmaverseadamjnj::adsl %>%
filter(.data[[popfl]] == "Y") %>%
select(USUBJID, all_of(c(popfl, trtvar)))
adsl$colspan_trt <- factor(
ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
levels = c("Active Study Agent", " ")
)
adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs", ctrl_grp))
adeg <- adeg_complete %>%
filter(PARAMCD %in% selparamcd) %>%
# filter(AVISIT %in% selvisit) %>%
### Maximum On-treatment
### note: by filter ANL03FL, this table is restricted to On-treatment values, per definition of ANL03FL
### therefor, no need to add ONTRTFL in filter
### if derivation of ANL03FL is not restricted to ONTRTFL records, adding ONTRTFL here will not give the correct answer either
### as mixing worst with other period is not giving the proper selection !!!
filter(ANL03FL == "Y") %>%
select(
USUBJID,
ONTRTFL,
TRTEMFL,
PARAM,
PARAMCD,
AVISITN,
AVISIT,
AVAL,
BASE,
CHG,
CRIT1,
CRIT1FL,
CRIT2,
CRIT2FL,
all_of(catvar),
ONTRTFL,
TRTEMFL,
ANL01FL,
ANL02FL
) %>%
inner_join(., adsl)
check1 <- adeg %>%
group_by(TRT01A, PARAMCD, AVISIT) %>%
summarize(n = n_distinct(USUBJID))
colspan_trt_map <- create_colspan_map(
adsl,
non_active_grp = ctrl_grp,
non_active_grp_span_lbl = " ",
active_grp_span_lbl = "Active Study Agent",
colspan_var = "colspan_trt",
trt_var = trtvar
)
ref_path <- c("colspan_trt", " ", trtvar, ctrl_grp)
# Define layout and build table:
extra_args_rr <- list(
method = "wald",
denom = "n_df",
.stats = c("denom", "count_unique_fraction")
)
lyt <- basic_table(show_colcounts = TRUE, colcount_format = "N=xx") %>%
split_cols_by(
"colspan_trt",
split_fun = trim_levels_to_map(map = colspan_trt_map)
) %>%
split_cols_by(
trtvar
# , split_fun = add_combo_levels(combodf)
) %>%
### if risk diff columns are wanted - re-enable next 2 split_cols_by lines
# split_cols_by("rrisk_header", nested = FALSE) %>%
# split_cols_by(trtvar, labels_var = "rrisk_label",
# split_fun = remove_split_levels(ctrl_grp)) %>%
split_rows_by(
"PARAM",
split_label = "QTc Interval",
label_pos = "topleft",
split_fun = drop_split_levels,
section_div = " "
) %>%
analyze(
c("CHGCAT1"),
a_freq_j,
extra_args = extra_args_rr,
show_labels = "hidden",
indent_mod = 1L
) %>%
append_topleft(" Criteria, n (%)")
result <- build_table(lyt, adeg, alt_counts_df = adsl)
# Add titles and footnotes:
result <- set_titles(result, titles)
# Convert to tbl file and output table
tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map)
```
[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::