TL Catalog
  1. Tables
  2. Electrocardiograms
  3. TSFECG03
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Electrocardiograms
  3. TSFECG03

TSFECG03

Categorized Change From Baseline to Maximum On-treatment Corrected QT Interval


Output

  • Preview
Code
# Program Name:              tsfecg03

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSFECG03"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

popfl <- "SAFFL"
trtvar <- "TRT01A"
ctrl_grp <- "Placebo"

ad_domain <- "adeg"

selvisit <- c(
  "Baseline",
  "Month 1",
  "Month 3",
  "Month 6",
  "Month 9",
  "Month 12",
  "Month 15",
  "Month 18",
  "Month 24"
)

## selection of QTC parameters
selparamcd <- c("QTCFAG", "QTCBAG", "QTCS", "QTCLAG")

# initial read of data

adeg_complete <- pharmaverseadamjnj::adeg

### available QTC parameters in study
selparamcd <- intersect(selparamcd, unique(adeg_complete$PARAMCD))


catvar <- "CHGCAT1"
## all parameters have the same levels for CHGCAT1 -- there is no need to create a map dataframe

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(USUBJID, all_of(c(popfl, trtvar)))


adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs", ctrl_grp))


adeg <- adeg_complete %>%
  filter(PARAMCD %in% selparamcd) %>%
  # filter(AVISIT %in% selvisit) %>%
  ### Maximum On-treatment
  ### note: by filter ANL03FL, this table is restricted to On-treatment values, per definition of ANL03FL
  ### therefor, no need to add ONTRTFL in filter
  ### if derivation of ANL03FL is not restricted to ONTRTFL records, adding ONTRTFL here will not give the correct answer either
  ### as mixing worst with other period is not giving the proper selection !!!
  filter(ANL03FL == "Y") %>%
  select(
    USUBJID,
    ONTRTFL,
    TRTEMFL,
    PARAM,
    PARAMCD,
    AVISITN,
    AVISIT,
    AVAL,
    BASE,
    CHG,
    CRIT1,
    CRIT1FL,
    CRIT2,
    CRIT2FL,
    all_of(catvar),
    ONTRTFL,
    TRTEMFL,
    ANL01FL,
    ANL02FL
  ) %>%
  inner_join(., adsl)


check1 <- adeg %>%
  group_by(TRT01A, PARAMCD, AVISIT) %>%
  summarize(n = n_distinct(USUBJID))

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

ref_path <- c("colspan_trt", " ", trtvar, ctrl_grp)

# Define layout and build table:

extra_args_rr <- list(
  method = "wald",
  denom = "n_df",
  .stats = c("denom", "count_unique_fraction")
)


lyt <- basic_table(show_colcounts = TRUE, colcount_format = "N=xx") %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(
    trtvar
    # , split_fun = add_combo_levels(combodf)
  ) %>%
  ### if risk diff columns are wanted - re-enable next 2 split_cols_by lines
  # split_cols_by("rrisk_header", nested = FALSE) %>%
  # split_cols_by(trtvar, labels_var = "rrisk_label",
  #               split_fun = remove_split_levels(ctrl_grp))  %>%

  split_rows_by(
    "PARAM",
    split_label = "QTc Interval",
    label_pos = "topleft",
    split_fun = drop_split_levels,
    section_div = " "
  ) %>%
  analyze(
    c("CHGCAT1"),
    a_freq_j,
    extra_args = extra_args_rr,
    show_labels = "hidden",
    indent_mod = 1L
  ) %>%
  append_topleft("   Criteria, n (%)")

result <- build_table(lyt, adeg, alt_counts_df = adsl)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)

TSFECG03: Categorized Change From Baseline to Maximum On-treatment Corrected QT Interval; Safety Analysis Set (Study jjcs - core)

Active Study Agent

QTc Interval

Xanomeline High Dose

Xanomeline Low Dose

Placebo

Criteria, n (%)

N=53

N=73

N=59

QTcB Interval, Aggregate
 (msec)

N

53

53

56

≤30

30 (56.6%)

29 (54.7%)

37 (66.1%)

>30 to ≤60

5 (9.4%)

3 (5.7%)

2 (3.6%)

>60

18 (34.0%)

21 (39.6%)

17 (30.4%)

QTcF Interval, Aggregate
 (msec)

N

53

53

56

≤30

31 (58.5%)

25 (47.2%)

28 (50.0%)

>30 to ≤60

4 (7.5%)

3 (5.7%)

8 (14.3%)

>60

18 (34.0%)

25 (47.2%)

20 (35.7%)

Note: On-treatment is defined as QTc interval values obtained after the first dose and within [30 days] following treatment discontinuation.

Note: N is the number of subjects with at least 1 non-missing change from baseline value for the ECG parameter over the specified time period.

Download RTF file

TSFECG02
TSFECG04
Source Code
---
title: TSFECG03
subtitle: Categorized Change From Baseline to Maximum On-treatment Corrected QT Interval
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsfecg03

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSFECG03"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

popfl <- "SAFFL"
trtvar <- "TRT01A"
ctrl_grp <- "Placebo"

ad_domain <- "adeg"

selvisit <- c(
  "Baseline",
  "Month 1",
  "Month 3",
  "Month 6",
  "Month 9",
  "Month 12",
  "Month 15",
  "Month 18",
  "Month 24"
)

## selection of QTC parameters
selparamcd <- c("QTCFAG", "QTCBAG", "QTCS", "QTCLAG")

# initial read of data

adeg_complete <- pharmaverseadamjnj::adeg

### available QTC parameters in study
selparamcd <- intersect(selparamcd, unique(adeg_complete$PARAMCD))


catvar <- "CHGCAT1"
## all parameters have the same levels for CHGCAT1 -- there is no need to create a map dataframe

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(USUBJID, all_of(c(popfl, trtvar)))


adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs", ctrl_grp))


adeg <- adeg_complete %>%
  filter(PARAMCD %in% selparamcd) %>%
  # filter(AVISIT %in% selvisit) %>%
  ### Maximum On-treatment
  ### note: by filter ANL03FL, this table is restricted to On-treatment values, per definition of ANL03FL
  ### therefor, no need to add ONTRTFL in filter
  ### if derivation of ANL03FL is not restricted to ONTRTFL records, adding ONTRTFL here will not give the correct answer either
  ### as mixing worst with other period is not giving the proper selection !!!
  filter(ANL03FL == "Y") %>%
  select(
    USUBJID,
    ONTRTFL,
    TRTEMFL,
    PARAM,
    PARAMCD,
    AVISITN,
    AVISIT,
    AVAL,
    BASE,
    CHG,
    CRIT1,
    CRIT1FL,
    CRIT2,
    CRIT2FL,
    all_of(catvar),
    ONTRTFL,
    TRTEMFL,
    ANL01FL,
    ANL02FL
  ) %>%
  inner_join(., adsl)


check1 <- adeg %>%
  group_by(TRT01A, PARAMCD, AVISIT) %>%
  summarize(n = n_distinct(USUBJID))

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

ref_path <- c("colspan_trt", " ", trtvar, ctrl_grp)

# Define layout and build table:

extra_args_rr <- list(
  method = "wald",
  denom = "n_df",
  .stats = c("denom", "count_unique_fraction")
)


lyt <- basic_table(show_colcounts = TRUE, colcount_format = "N=xx") %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(
    trtvar
    # , split_fun = add_combo_levels(combodf)
  ) %>%
  ### if risk diff columns are wanted - re-enable next 2 split_cols_by lines
  # split_cols_by("rrisk_header", nested = FALSE) %>%
  # split_cols_by(trtvar, labels_var = "rrisk_label",
  #               split_fun = remove_split_levels(ctrl_grp))  %>%

  split_rows_by(
    "PARAM",
    split_label = "QTc Interval",
    label_pos = "topleft",
    split_fun = drop_split_levels,
    section_div = " "
  ) %>%
  analyze(
    c("CHGCAT1"),
    a_freq_j,
    extra_args = extra_args_rr,
    show_labels = "hidden",
    indent_mod = 1L
  ) %>%
  append_topleft("   Criteria, n (%)")

result <- build_table(lyt, adeg, alt_counts_df = adsl)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences