TL Catalog
  1. Tables
  2. Prior and Concomitant Therapies
  3. TSICM08
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Prior and Concomitant Therapies
  3. TSICM08

TSICM08

Concomitant Medications of Interest


Output

  • Preview
Code
# Program Name:              tsicm08.R

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

# - Define output ID and file location

tblid <- "TSICM08"
fileid <- tblid
tab_titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

trtvar <- "TRT01A"
popfl <- "SAFFL"

codedtermvar <- "CMBASPRF"

combined_colspan_trt <- TRUE

if (combined_colspan_trt == TRUE) {
  # Set up levels and label for the required combined columns
  add_combo <- add_combo_facet(
    "Combined",
    label = "Combined",
    levels = c("Xanomeline High Dose", "Xanomeline Low Dose")
  )

  # choose if any facets need to be removed - e.g remove the combined column for placebo
  rm_combo_from_placebo <- cond_rm_facets(
    facets = "Combined",
    ancestor_pos = NA,
    value = " ",
    split = "colspan_trt"
  )

  mysplit <- make_split_fun(post = list(add_combo, rm_combo_from_placebo))
}

# Process Data:

# Read in required data
adsl <- pharmaverseadamjnj::adsl %>%
  filter(!!rlang::sym(popfl) == "Y") %>%
  select(USUBJID, all_of(trtvar), all_of(popfl))

adcm <- pharmaverseadamjnj::adcm %>%
  filter(ONTRTFL == "Y") %>%
  select(USUBJID, ONTRTFL, all_of(codedtermvar), starts_with("CQ")) %>%
  select(USUBJID, ONTRTFL, all_of(codedtermvar), ends_with("NAM"))

# Work out how many CQzzNAM vars we have
cqzznamvars <- adcm %>%
  select(starts_with("CQ"))

countcqzznamvars <- length(names(cqzznamvars))

# Create new variable that binds all special interest data together in vertical structure
mat <- matrix(ncol = 0, nrow = 0)
adcm_v <- data.frame(mat)

for (i in 1:countcqzznamvars) {
  if (i < 10) {
    ix <- paste0("0", i)
  } else {
    ix <- i
  }

  cqdata <- adcm %>%
    mutate(cqnamvar = as.factor(!!as.name(paste0("CQ", ix, "NAM")))) %>%
    filter(!is.na(cqnamvar))

  adcm_v <- bind_rows(adcm_v, cqdata)
}

# Convert medications to sentence case
adcm_v[[codedtermvar]] <- as.factor(stringr::str_to_sentence(adcm_v[[
  codedtermvar
]]))

adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == "Placebo", " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

# join data together
cm <- adcm_v %>% inner_join(., adsl, by = c("USUBJID"))

if (length(adcm$ONTRTFL) == 0) {
  cm <- adcm_v %>% right_join(., adsl, by = c("USUBJID"))
}

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = "Placebo",
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

# Define layout and build table:

extra_args_1 <- list(
  denom = "n_altdf",
  .stats = c("count_unique_fraction")
)

lyt <- rtables::basic_table(
  top_level_section_div = " ",
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  )

if (combined_colspan_trt == TRUE) {
  lyt <- lyt %>%
    split_cols_by(trtvar, split_fun = mysplit)
} else {
  lyt <- lyt %>%
    split_cols_by(trtvar)
}

lyt <- lyt %>%
  add_overall_col("Total")

if (length(adcm$ONTRTFL) == 0) {
  lyt <- lyt %>%
    analyze(
      "ONTRTFL",
      afun = a_freq_j,
      extra_args = append(
        extra_args_1,
        list(label = "Subjects with >=1 concomitant medication")
      )
    )
}

lyt <- lyt %>%
  split_rows_by(
    "cqnamvar",
    child_labels = "hidden",
    split_label = "Interest Category",
    label_pos = "topleft",
    split_fun = trim_levels_in_group(codedtermvar),
    section_div = c(" "),
    indent_mod = 0L
  ) %>%
  summarize_row_groups(
    "cqnamvar",
    cfun = a_freq_j,
    extra_args = extra_args_1
  ) %>%
  analyze(codedtermvar, afun = a_freq_j, extra_args = (extra_args_1)) %>%
  append_topleft("  Base Preferred Term")

result <- build_table(lyt, cm, alt_counts_df = adsl)

# If there is no data remove top row and display "No data to display" text
if (length(adcm$ONTRTFL) == 0) {
  result <- safe_prune_table(
    result,
    prune_func = remove_rows(
      removerowtext = "Subjects with >=1 concomitant medication"
    )
  )
}

# Post-Processing step to sort by descending count on total column

if (length(adcm$ONTRTFL) != 0) {
  result <- sort_at_path(
    result,
    c("cqnamvar"),
    scorefun = jj_complex_scorefun(colpath = "Total")
  )
  result <- sort_at_path(
    result,
    c("cqnamvar", "*", codedtermvar),
    scorefun = jj_complex_scorefun(colpath = "Total")
  )
}

# Add titles and footnotes:

result <- set_titles(result, tab_titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "landscape")

TSICM08: Concomitant Medications of Interest; Safety Analysis Set (Study jjcs - core)

Active Study Agent

Interest Category

Xanomeline High Dose

Xanomeline Low Dose

Combined

Placebo

Total

Base Preferred Term

N=53

N=73

N=126

N=59

N=185

Steroid

7 (13.2%)

9 (12.3%)

16 (12.7%)

1 (1.7%)

17 (9.2%)

Hydrocortisone

7 (13.2%)

9 (12.3%)

16 (12.7%)

1 (1.7%)

17 (9.2%)

Acetylsalicylic Acid

0

1 (1.4%)

1 (0.8%)

1 (1.7%)

2 (1.1%)

Acetylsalicylic acid

0

1 (1.4%)

1 (0.8%)

1 (1.7%)

2 (1.1%)

Note: Concomitant medications are defined as any therapy used on or after the same day as the first dose of study treatment [up to last dose of study treatment +xx days}, including those that started before and continue on after the first dose of study treatment.

Download RTF file

TSICM07
TSFVIT01
Source Code
---
title: TSICM08
subtitle: Concomitant Medications of Interest
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsicm08.R

# Prep Environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

# - Define output ID and file location

tblid <- "TSICM08"
fileid <- tblid
tab_titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

trtvar <- "TRT01A"
popfl <- "SAFFL"

codedtermvar <- "CMBASPRF"

combined_colspan_trt <- TRUE

if (combined_colspan_trt == TRUE) {
  # Set up levels and label for the required combined columns
  add_combo <- add_combo_facet(
    "Combined",
    label = "Combined",
    levels = c("Xanomeline High Dose", "Xanomeline Low Dose")
  )

  # choose if any facets need to be removed - e.g remove the combined column for placebo
  rm_combo_from_placebo <- cond_rm_facets(
    facets = "Combined",
    ancestor_pos = NA,
    value = " ",
    split = "colspan_trt"
  )

  mysplit <- make_split_fun(post = list(add_combo, rm_combo_from_placebo))
}

# Process Data:

# Read in required data
adsl <- pharmaverseadamjnj::adsl %>%
  filter(!!rlang::sym(popfl) == "Y") %>%
  select(USUBJID, all_of(trtvar), all_of(popfl))

adcm <- pharmaverseadamjnj::adcm %>%
  filter(ONTRTFL == "Y") %>%
  select(USUBJID, ONTRTFL, all_of(codedtermvar), starts_with("CQ")) %>%
  select(USUBJID, ONTRTFL, all_of(codedtermvar), ends_with("NAM"))

# Work out how many CQzzNAM vars we have
cqzznamvars <- adcm %>%
  select(starts_with("CQ"))

countcqzznamvars <- length(names(cqzznamvars))

# Create new variable that binds all special interest data together in vertical structure
mat <- matrix(ncol = 0, nrow = 0)
adcm_v <- data.frame(mat)

for (i in 1:countcqzznamvars) {
  if (i < 10) {
    ix <- paste0("0", i)
  } else {
    ix <- i
  }

  cqdata <- adcm %>%
    mutate(cqnamvar = as.factor(!!as.name(paste0("CQ", ix, "NAM")))) %>%
    filter(!is.na(cqnamvar))

  adcm_v <- bind_rows(adcm_v, cqdata)
}

# Convert medications to sentence case
adcm_v[[codedtermvar]] <- as.factor(stringr::str_to_sentence(adcm_v[[
  codedtermvar
]]))

adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == "Placebo", " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

# join data together
cm <- adcm_v %>% inner_join(., adsl, by = c("USUBJID"))

if (length(adcm$ONTRTFL) == 0) {
  cm <- adcm_v %>% right_join(., adsl, by = c("USUBJID"))
}

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = "Placebo",
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

# Define layout and build table:

extra_args_1 <- list(
  denom = "n_altdf",
  .stats = c("count_unique_fraction")
)

lyt <- rtables::basic_table(
  top_level_section_div = " ",
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  )

if (combined_colspan_trt == TRUE) {
  lyt <- lyt %>%
    split_cols_by(trtvar, split_fun = mysplit)
} else {
  lyt <- lyt %>%
    split_cols_by(trtvar)
}

lyt <- lyt %>%
  add_overall_col("Total")

if (length(adcm$ONTRTFL) == 0) {
  lyt <- lyt %>%
    analyze(
      "ONTRTFL",
      afun = a_freq_j,
      extra_args = append(
        extra_args_1,
        list(label = "Subjects with >=1 concomitant medication")
      )
    )
}

lyt <- lyt %>%
  split_rows_by(
    "cqnamvar",
    child_labels = "hidden",
    split_label = "Interest Category",
    label_pos = "topleft",
    split_fun = trim_levels_in_group(codedtermvar),
    section_div = c(" "),
    indent_mod = 0L
  ) %>%
  summarize_row_groups(
    "cqnamvar",
    cfun = a_freq_j,
    extra_args = extra_args_1
  ) %>%
  analyze(codedtermvar, afun = a_freq_j, extra_args = (extra_args_1)) %>%
  append_topleft("  Base Preferred Term")

result <- build_table(lyt, cm, alt_counts_df = adsl)

# If there is no data remove top row and display "No data to display" text
if (length(adcm$ONTRTFL) == 0) {
  result <- safe_prune_table(
    result,
    prune_func = remove_rows(
      removerowtext = "Subjects with >=1 concomitant medication"
    )
  )
}

# Post-Processing step to sort by descending count on total column

if (length(adcm$ONTRTFL) != 0) {
  result <- sort_at_path(
    result,
    c("cqnamvar"),
    scorefun = jj_complex_scorefun(colpath = "Total")
  )
  result <- sort_at_path(
    result,
    c("cqnamvar", "*", codedtermvar),
    scorefun = jj_complex_scorefun(colpath = "Total")
  )
}

# Add titles and footnotes:

result <- set_titles(result, tab_titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "landscape")
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences