---
title: TSFVIT04
subtitle: Subjects Meeting Specific On-treatment Hypotension Levels
---
------------------------------------------------------------------------
{{< include ../../_utils/envir_hook.qmd >}}
```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"
# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")
Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)
dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")
aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")
###### Study specific updates (formerly in envre)
dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"
apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))
```
## Output
:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview
```{r variant1, results='hide', warning = FALSE, message = FALSE}
# Program Name: tsfvit04
# Prep environment:
library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)
# Define script level parameters:
tblid <- "TSFVIT04"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map
popfl <- "SAFFL"
trtvar <- "TRT01A"
ctrl_grp <- "Placebo"
selparamcd <- c("SYSBP", "DIABP")
### as in dataset, order is important for later processing
### not automated, hard coded approach for ease of reading
### ideally the datasets already contain the appropriate case, to ensure units are in proper case
sel_param <- c(
"Systolic Blood Pressure (mmHg)",
"Diastolic Blood Pressure (mmHg)"
)
sel_param_case <- c(
"Systolic blood pressure (mmHg)",
"Diastolic blood pressure (mmHg)"
)
# Process Data:
adsl <- pharmaverseadamjnj::adsl %>%
filter(.data[[popfl]] == "Y") %>%
select(USUBJID, all_of(c(popfl, trtvar)), SEX, AGEGR1, RACE, ETHNIC)
adsl$colspan_trt <- factor(
ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
levels = c("Active Study Agent", " ")
)
adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs", ctrl_grp))
colspan_trt_map <- create_colspan_map(
adsl,
non_active_grp = ctrl_grp,
non_active_grp_span_lbl = " ",
active_grp_span_lbl = "Active Study Agent",
colspan_var = "colspan_trt",
trt_var = trtvar
)
ref_path <- c("colspan_trt", " ", trtvar, ctrl_grp)
### add On-treatment restriction
filtered_advs <- pharmaverseadamjnj::advs %>%
filter(PARAMCD %in% selparamcd) %>%
### as this table is using CRIT3 and not a flag like ANL03FL
### we need to explicitely apply filter ONTRTFL to restrict to On-treatment
filter(ONTRTFL == "Y") %>%
select(
STUDYID,
USUBJID,
PARAMCD,
PARAM,
AVALCAT1,
AVALCA1N,
AVISIT,
APOBLFL,
CRIT3,
CRIT3FL,
ONTRTFL
) %>%
inner_join(adsl) %>%
### ensure to keep only 1 result per subject, keep N only in case no Y was observed
arrange(USUBJID, PARAMCD, CRIT3, CRIT3FL) %>%
group_by(USUBJID, PARAMCD) %>%
mutate(ncrit3 = n_distinct(CRIT3FL)) %>%
filter(!(ncrit3 > 1 & CRIT3FL == "N")) %>%
## only keep one record
slice_head(n = 1) %>%
ungroup()
filtered_advs$PARAM <- factor(
as.character(filtered_advs$PARAM),
levels = sel_param,
labels = sel_param_case
)
### Mapping for CRIT3
### alternative approach to retrieve from metadata iso dataset
xlabel_map <- unique(filtered_advs %>% select(PARAM, CRIT3)) %>%
rename(label = CRIT3) %>%
mutate(
value = "Y",
label = as.character(label)
)
# Define layout and build table:
extra_args1 <- list(denom = "n_df", riskdiff = FALSE, .stats = c("n_df"))
extra_args_rr <- list(
denom = "n_df",
riskdiff = TRUE,
method = "wald",
ref_path = ref_path,
.stats = c("count_unique_fraction")
)
lyt <- basic_table(
show_colcounts = TRUE,
colcount_format = "N=xx"
) %>%
split_cols_by(
"colspan_trt",
split_fun = trim_levels_to_map(map = colspan_trt_map)
) %>%
split_cols_by(trtvar) %>%
split_cols_by("rrisk_header", nested = FALSE) %>%
split_cols_by(
trtvar,
labels_var = "rrisk_label",
split_fun = remove_split_levels(ctrl_grp)
) %>%
#### this assumes subjects always have both systolic and diastolic parameters
analyze(
"CRIT3FL",
a_freq_j,
show_labels = "hidden",
table_names = "CRIT3_N",
extra_args = extra_args1
) %>%
split_rows_by(
"PARAM",
label_pos = "topleft",
child_labels = "hidden",
split_label = paste("Blood Pressure (mmHg), n (%)")
) %>%
analyze(
"CRIT3FL",
a_freq_j,
extra_args = append(
extra_args_rr,
list(
val = c("Y"),
label_map = xlabel_map
)
),
indent_mod = 1L,
show_labels = "hidden"
)
result <- build_table(lyt, filtered_advs, alt_counts_df = adsl)
# Post-Processing:
result <- remove_col_count(result)
# Add titles and footnotes:
result <- set_titles(result, titles)
# Convert to tbl file and output table
tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "landscape")
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map)
```
[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::