TL Catalog
  1. Tables
  2. Vital Signs and Physical Findings
  3. TSFVIT04
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Vital Signs and Physical Findings
  3. TSFVIT04

TSFVIT04

Subjects Meeting Specific On-treatment Hypotension Levels


Output

  • Preview
Code
# Program Name:              tsfvit04

# Prep environment:

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSFVIT04"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

popfl <- "SAFFL"
trtvar <- "TRT01A"
ctrl_grp <- "Placebo"

selparamcd <- c("SYSBP", "DIABP")
### as in dataset, order is important for later processing
### not automated, hard coded approach for ease of reading
### ideally the datasets already contain the appropriate case, to ensure units are in proper case
sel_param <- c(
  "Systolic Blood Pressure (mmHg)",
  "Diastolic Blood Pressure (mmHg)"
)
sel_param_case <- c(
  "Systolic blood pressure (mmHg)",
  "Diastolic blood pressure (mmHg)"
)

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(USUBJID, all_of(c(popfl, trtvar)), SEX, AGEGR1, RACE, ETHNIC)


adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs", ctrl_grp))

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

ref_path <- c("colspan_trt", " ", trtvar, ctrl_grp)

### add On-treatment restriction
filtered_advs <- pharmaverseadamjnj::advs %>%
  filter(PARAMCD %in% selparamcd) %>%
  ### as this table is using CRIT3 and not a flag like ANL03FL
  ### we need to explicitely apply filter ONTRTFL to restrict to On-treatment
  filter(ONTRTFL == "Y") %>%
  select(
    STUDYID,
    USUBJID,
    PARAMCD,
    PARAM,
    AVALCAT1,
    AVALCA1N,
    AVISIT,
    APOBLFL,
    CRIT3,
    CRIT3FL,
    ONTRTFL
  ) %>%
  inner_join(adsl) %>%
  ### ensure to keep only 1 result per subject, keep N only in case no Y was observed
  arrange(USUBJID, PARAMCD, CRIT3, CRIT3FL) %>%
  group_by(USUBJID, PARAMCD) %>%
  mutate(ncrit3 = n_distinct(CRIT3FL)) %>%
  filter(!(ncrit3 > 1 & CRIT3FL == "N")) %>%
  ## only keep one record
  slice_head(n = 1) %>%
  ungroup()


filtered_advs$PARAM <- factor(
  as.character(filtered_advs$PARAM),
  levels = sel_param,
  labels = sel_param_case
)


### Mapping for CRIT3
### alternative approach to retrieve from metadata iso dataset
xlabel_map <- unique(filtered_advs %>% select(PARAM, CRIT3)) %>%
  rename(label = CRIT3) %>%
  mutate(
    value = "Y",
    label = as.character(label)
  )

# Define layout and build table:

extra_args1 <- list(denom = "n_df", riskdiff = FALSE, .stats = c("n_df"))
extra_args_rr <- list(
  denom = "n_df",
  riskdiff = TRUE,
  method = "wald",
  ref_path = ref_path,
  .stats = c("count_unique_fraction")
)


lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(trtvar) %>%
  split_cols_by("rrisk_header", nested = FALSE) %>%
  split_cols_by(
    trtvar,
    labels_var = "rrisk_label",
    split_fun = remove_split_levels(ctrl_grp)
  ) %>%
  #### this assumes subjects always have both systolic and diastolic parameters
  analyze(
    "CRIT3FL",
    a_freq_j,
    show_labels = "hidden",
    table_names = "CRIT3_N",
    extra_args = extra_args1
  ) %>%
  split_rows_by(
    "PARAM",
    label_pos = "topleft",
    child_labels = "hidden",
    split_label = paste("Blood Pressure (mmHg), n (%)")
  ) %>%
  analyze(
    "CRIT3FL",
    a_freq_j,
    extra_args = append(
      extra_args_rr,
      list(
        val = c("Y"),
        label_map = xlabel_map
      )
    ),
    indent_mod = 1L,
    show_labels = "hidden"
  )

result <- build_table(lyt, filtered_advs, alt_counts_df = adsl)

# Post-Processing:

result <- remove_col_count(result)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "landscape")

TSFVIT04: Subjects Meeting Specific On-treatment Hypotension Levels; Safety Analysis Set (Study jjcs - core)

Active Study Agent

Risk Difference (%) (95% CI)

Xanomeline High Dose

Xanomeline Low Dose

Placebo

Xanomeline High Dose vs Placebo

Xanomeline Low Dose vs Placebo

Blood Pressure (mmHg), n (%)

N=53

N=73

N=59

N

53

71

58

Systolic blood pressure<90

0

0

4 (6.9%)

-6.9 (-13.4, -0.4)

-6.9 (-13.4, -0.4)

Diastolic blood pressure<60

6 (11.3%)

8 (11.3%)

9 (15.5%)

-4.2 (-16.8, 8.4)

-4.2 (-16.1, 7.6)

Note: On-treatment is defined as blood pressure values obtained after the first dose and within [30 days] following treatment discontinuation.

Download RTF file

TSFVIT03
TSFVIT05
Source Code
---
title: TSFVIT04
subtitle: Subjects Meeting Specific On-treatment Hypotension Levels
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsfvit04

# Prep environment:

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSFVIT04"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

popfl <- "SAFFL"
trtvar <- "TRT01A"
ctrl_grp <- "Placebo"

selparamcd <- c("SYSBP", "DIABP")
### as in dataset, order is important for later processing
### not automated, hard coded approach for ease of reading
### ideally the datasets already contain the appropriate case, to ensure units are in proper case
sel_param <- c(
  "Systolic Blood Pressure (mmHg)",
  "Diastolic Blood Pressure (mmHg)"
)
sel_param_case <- c(
  "Systolic blood pressure (mmHg)",
  "Diastolic blood pressure (mmHg)"
)

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(USUBJID, all_of(c(popfl, trtvar)), SEX, AGEGR1, RACE, ETHNIC)


adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs", ctrl_grp))

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

ref_path <- c("colspan_trt", " ", trtvar, ctrl_grp)

### add On-treatment restriction
filtered_advs <- pharmaverseadamjnj::advs %>%
  filter(PARAMCD %in% selparamcd) %>%
  ### as this table is using CRIT3 and not a flag like ANL03FL
  ### we need to explicitely apply filter ONTRTFL to restrict to On-treatment
  filter(ONTRTFL == "Y") %>%
  select(
    STUDYID,
    USUBJID,
    PARAMCD,
    PARAM,
    AVALCAT1,
    AVALCA1N,
    AVISIT,
    APOBLFL,
    CRIT3,
    CRIT3FL,
    ONTRTFL
  ) %>%
  inner_join(adsl) %>%
  ### ensure to keep only 1 result per subject, keep N only in case no Y was observed
  arrange(USUBJID, PARAMCD, CRIT3, CRIT3FL) %>%
  group_by(USUBJID, PARAMCD) %>%
  mutate(ncrit3 = n_distinct(CRIT3FL)) %>%
  filter(!(ncrit3 > 1 & CRIT3FL == "N")) %>%
  ## only keep one record
  slice_head(n = 1) %>%
  ungroup()


filtered_advs$PARAM <- factor(
  as.character(filtered_advs$PARAM),
  levels = sel_param,
  labels = sel_param_case
)


### Mapping for CRIT3
### alternative approach to retrieve from metadata iso dataset
xlabel_map <- unique(filtered_advs %>% select(PARAM, CRIT3)) %>%
  rename(label = CRIT3) %>%
  mutate(
    value = "Y",
    label = as.character(label)
  )

# Define layout and build table:

extra_args1 <- list(denom = "n_df", riskdiff = FALSE, .stats = c("n_df"))
extra_args_rr <- list(
  denom = "n_df",
  riskdiff = TRUE,
  method = "wald",
  ref_path = ref_path,
  .stats = c("count_unique_fraction")
)


lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(trtvar) %>%
  split_cols_by("rrisk_header", nested = FALSE) %>%
  split_cols_by(
    trtvar,
    labels_var = "rrisk_label",
    split_fun = remove_split_levels(ctrl_grp)
  ) %>%
  #### this assumes subjects always have both systolic and diastolic parameters
  analyze(
    "CRIT3FL",
    a_freq_j,
    show_labels = "hidden",
    table_names = "CRIT3_N",
    extra_args = extra_args1
  ) %>%
  split_rows_by(
    "PARAM",
    label_pos = "topleft",
    child_labels = "hidden",
    split_label = paste("Blood Pressure (mmHg), n (%)")
  ) %>%
  analyze(
    "CRIT3FL",
    a_freq_j,
    extra_args = append(
      extra_args_rr,
      list(
        val = c("Y"),
        label_map = xlabel_map
      )
    ),
    indent_mod = 1L,
    show_labels = "hidden"
  )

result <- build_table(lyt, filtered_advs, alt_counts_df = adsl)

# Post-Processing:

result <- remove_col_count(result)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "landscape")
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences