TL Catalog
  1. Tables
  2. Adverse Events
  3. TSFAE23D
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Adverse Events
  3. TSFAE23D

TSFAE23D

Subjects With Related Non-serious Treatment-emergent Adverse Events by Preferred Term


Output

  • Preview
Code
# Program Name:              tsfae23d.R

# Prep environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters

tblid <- "TSFAE23d"
fileid <- tblid
popfl <- "SAFFL"
trtvar <- "TRT01A"
aerelvar <- "AEREL"
combined_colspan_trt <- TRUE
tab_titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map


if (combined_colspan_trt == TRUE) {
  # If no combined treatment column(s) needed for your study then this next
  # section of code can be removed
  # Set up levels and label for the required combined columns
  add_combo <- add_combo_facet(
    "Combined",
    label = "Combined",
    levels = c(
      "Xanomeline High Dose",
      "Xanomeline Low Dose"
    )
  )

  # choose if any facets need to be removed - e.g remove the combined column
  # for placebo
  rm_combo_from_placebo <- cond_rm_facets(
    facets = "Combined",
    ancestor_pos = NA,
    value = " ",
    split = "colspan_trt"
  )

  mysplit <- make_split_fun(post = list(add_combo, rm_combo_from_placebo))
}

# Process data

adsl <- pharmaverseadamjnj::adsl %>%
  filter(!!rlang::sym(popfl) == "Y") %>%
  create_colspan_var(
    non_active_grp = c("Placebo"),
    non_active_grp_span_lbl = " ",
    active_grp_span_lbl = "Active Study Agent",
    colspan_var = "colspan_trt",
    trt_var = trtvar
  ) %>%
  select(
    STUDYID,
    USUBJID,
    !!rlang::sym(popfl),
    !!rlang::sym(trtvar),
    colspan_trt
  )

trt_map <- create_colspan_map(
  df = adsl,
  non_active_grp = c("Placebo"),
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)
ref_path <- c("colspan_trt", " ", trtvar, "Placebo")

adae0 <- pharmaverseadamjnj::adae %>%
  filter(
    !!rlang::sym(popfl) == "Y" &
      !!rlang::sym(aerelvar) == "RELATED" &
      TRTEMFL == "Y" &
      AESER == "N"
  ) %>%
  left_join(
    subset(adsl, select = c("STUDYID", "USUBJID", "colspan_trt")),
    by = c("STUDYID", "USUBJID")
  ) %>%
  select(
    STUDYID,
    USUBJID,
    !!rlang::sym(trtvar),
    !!rlang::sym(popfl),
    !!rlang::sym(aerelvar),
    TRTEMFL,
    AESER,
    AEDECOD,
    colspan_trt
  )

if (nrow(adae0) == 0) {
  adae <- adae0 %>%
    select(STUDYID, USUBJID, TRTEMFL, AEDECOD) %>%
    right_join(adsl, by = c("STUDYID", "USUBJID"))
} else {
  adae <- adae0
}

# Define layout and build table

lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx",
  top_level_section_div = " "
) %>%
  split_cols_by("colspan_trt", split_fun = trim_levels_to_map(map = trt_map))

if (combined_colspan_trt == TRUE) {
  lyt <- lyt %>%
    split_cols_by(trtvar, split_fun = mysplit)
} else {
  lyt <- lyt %>%
    split_cols_by(trtvar)
}

lyt <- lyt %>%
  analyze(
    vars = "TRTEMFL",
    show_labels = "hidden",
    afun = a_freq_j,
    extra_args = list(
      label = "Subjects with >=1 related non-serious AE",
      .stats = c("count_unique_fraction"),
      val = "Y"
    ),
    section_div = c(" ")
  )

if (nrow(adae0) > 0) {
  lyt <- lyt %>%
    count_occurrences(
      vars = "AEDECOD",
      .stats = c("count_fraction_fixed_dp"),
      .indent_mods = c(count_fraction = -1L),
      .formats = c("count_fraction_fixed_dp" = jjcsformat_count_fraction),
      nested = FALSE
    ) %>%
    append_topleft("Preferred Term, n (%)")
} else {
  lyt <- lyt %>%
    append_topleft("Preferred Term, n (%)")
}

result <- build_table(lyt, df = adae, alt_counts_df = adsl)

# Post-processing

if (nrow(adae0) > 0) {
  # Post-Processing step to sort by descending count in the Combined
  # Xanomeline High Dose column
  result <- sort_at_path(
    tt = result,
    path = c("root", "AEDECOD"),
    scorefun = jj_complex_scorefun(
      spanningheadercolvar = "colspan_trt",
      colpath = NULL
    )
  )
}

if (nrow(adae0) == 0) {
  # Post-Processing step to remove 'Subjects with' row
  result <- safe_prune_table(
    result,
    prune_func = remove_rows(
      removerowtext = "Subjects with >=1 related non-serious AE"
    )
  )
}

# Retrieve titles and footnotes

result <- set_titles(result, tab_titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)

TSFAE23d: Subjects With Related Non-serious Treatment-emergent Adverse Events by Preferred Term; Safety Analysis Set (Study jjcs - core)

Active Study Agent

Xanomeline High Dose

Xanomeline Low Dose

Combined

Placebo

Preferred Term, n (%)

N=53

N=73

N=126

N=59

Subjects with ≥1 related
 non-serious AE

13 (24.5%)

11 (15.1%)

24 (19.0%)

17 (28.8%)

DIZZINESS

4 (7.5%)

1 (1.4%)

5 (4.0%)

0

FATIGUE

1 (1.9%)

2 (2.7%)

3 (2.4%)

0

SINUS BRADYCARDIA

2 (3.8%)

1 (1.4%)

3 (2.4%)

0

CONTUSION

1 (1.9%)

1 (1.4%)

2 (1.6%)

0

HEADACHE

2 (3.8%)

0

2 (1.6%)

0

SOMNOLENCE

1 (1.9%)

1 (1.4%)

2 (1.6%)

0

VOMITING

2 (3.8%)

0

2 (1.6%)

0

ABDOMINAL PAIN

0

1 (1.4%)

1 (0.8%)

0

ASTHENIA

0

1 (1.4%)

1 (0.8%)

0

CHEST PAIN

1 (1.9%)

0

1 (0.8%)

0

CONJUNCTIVAL HAEMORRHAGE

0

1 (1.4%)

1 (0.8%)

0

COUGH

0

1 (1.4%)

1 (0.8%)

1 (1.7%)

EPISTAXIS

1 (1.9%)

0

1 (0.8%)

0

INCREASED APPETITE

1 (1.9%)

0

1 (0.8%)

0

NASAL CONGESTION

1 (1.9%)

0

1 (0.8%)

1 (1.7%)

NAUSEA

1 (1.9%)

0

1 (0.8%)

0

NIGHTMARE

1 (1.9%)

0

1 (0.8%)

0

PALPITATIONS

0

1 (1.4%)

1 (0.8%)

0

RHINORRHOEA

0

1 (1.4%)

1 (0.8%)

0

SKIN ODOUR ABNORMAL

1 (1.9%)

0

1 (0.8%)

0

VENTRICULAR EXTRASYSTOLES

0

1 (1.4%)

1 (0.8%)

0

ALOPECIA

0

0

0

1 (1.7%)

BLEEDING ANOVULATORY

0

0

0

1 (1.7%)

BUNDLE BRANCH BLOCK RIGHT

0

0

0

1 (1.7%)

CERVICITIS

0

0

0

1 (1.7%)

CONJUNCTIVITIS

0

0

0

1 (1.7%)

DIARRHOEA

0

0

0

1 (1.7%)

DISORIENTATION

0

0

0

1 (1.7%)

DISTURBANCE IN SEXUAL
 AROUSAL

0

0

0

1 (1.7%)

DYSURIA

0

0

0

1 (1.7%)

ELECTROCARDIOGRAM T WAVE
 INVERSION

0

0

0

2 (3.4%)

GASTROENTERITIS VIRAL

0

0

0

1 (1.7%)

HYPERTENSION

0

0

0

1 (1.7%)

HYPOTENSION

0

0

0

1 (1.7%)

MYOCARDIAL INFARCTION

0

0

0

1 (1.7%)

OEDEMA PERIPHERAL

0

0

0

1 (1.7%)

PSYCHOMOTOR HYPERACTIVITY

0

0

0

1 (1.7%)

RASH

0

0

0

1 (1.7%)

UPPER RESPIRATORY TRACT
 INFECTION

0

0

0

1 (1.7%)

URINARY TRACT INFECTION

0

0

0

1 (1.7%)

Note: An AE is assessed by the investigator as related. Subjects are counted only once for any given event, regardless of the number of times they actually experienced the event.

Note: Adverse events are coded using MedDRA version 26.0.

Download RTF file

TSFAE23C
TSFAE24A
Source Code
---
title: TSFAE23D
subtitle: Subjects With Related Non-serious Treatment-emergent Adverse Events by Preferred Term
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsfae23d.R

# Prep environment

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters

tblid <- "TSFAE23d"
fileid <- tblid
popfl <- "SAFFL"
trtvar <- "TRT01A"
aerelvar <- "AEREL"
combined_colspan_trt <- TRUE
tab_titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map


if (combined_colspan_trt == TRUE) {
  # If no combined treatment column(s) needed for your study then this next
  # section of code can be removed
  # Set up levels and label for the required combined columns
  add_combo <- add_combo_facet(
    "Combined",
    label = "Combined",
    levels = c(
      "Xanomeline High Dose",
      "Xanomeline Low Dose"
    )
  )

  # choose if any facets need to be removed - e.g remove the combined column
  # for placebo
  rm_combo_from_placebo <- cond_rm_facets(
    facets = "Combined",
    ancestor_pos = NA,
    value = " ",
    split = "colspan_trt"
  )

  mysplit <- make_split_fun(post = list(add_combo, rm_combo_from_placebo))
}

# Process data

adsl <- pharmaverseadamjnj::adsl %>%
  filter(!!rlang::sym(popfl) == "Y") %>%
  create_colspan_var(
    non_active_grp = c("Placebo"),
    non_active_grp_span_lbl = " ",
    active_grp_span_lbl = "Active Study Agent",
    colspan_var = "colspan_trt",
    trt_var = trtvar
  ) %>%
  select(
    STUDYID,
    USUBJID,
    !!rlang::sym(popfl),
    !!rlang::sym(trtvar),
    colspan_trt
  )

trt_map <- create_colspan_map(
  df = adsl,
  non_active_grp = c("Placebo"),
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)
ref_path <- c("colspan_trt", " ", trtvar, "Placebo")

adae0 <- pharmaverseadamjnj::adae %>%
  filter(
    !!rlang::sym(popfl) == "Y" &
      !!rlang::sym(aerelvar) == "RELATED" &
      TRTEMFL == "Y" &
      AESER == "N"
  ) %>%
  left_join(
    subset(adsl, select = c("STUDYID", "USUBJID", "colspan_trt")),
    by = c("STUDYID", "USUBJID")
  ) %>%
  select(
    STUDYID,
    USUBJID,
    !!rlang::sym(trtvar),
    !!rlang::sym(popfl),
    !!rlang::sym(aerelvar),
    TRTEMFL,
    AESER,
    AEDECOD,
    colspan_trt
  )

if (nrow(adae0) == 0) {
  adae <- adae0 %>%
    select(STUDYID, USUBJID, TRTEMFL, AEDECOD) %>%
    right_join(adsl, by = c("STUDYID", "USUBJID"))
} else {
  adae <- adae0
}

# Define layout and build table

lyt <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx",
  top_level_section_div = " "
) %>%
  split_cols_by("colspan_trt", split_fun = trim_levels_to_map(map = trt_map))

if (combined_colspan_trt == TRUE) {
  lyt <- lyt %>%
    split_cols_by(trtvar, split_fun = mysplit)
} else {
  lyt <- lyt %>%
    split_cols_by(trtvar)
}

lyt <- lyt %>%
  analyze(
    vars = "TRTEMFL",
    show_labels = "hidden",
    afun = a_freq_j,
    extra_args = list(
      label = "Subjects with >=1 related non-serious AE",
      .stats = c("count_unique_fraction"),
      val = "Y"
    ),
    section_div = c(" ")
  )

if (nrow(adae0) > 0) {
  lyt <- lyt %>%
    count_occurrences(
      vars = "AEDECOD",
      .stats = c("count_fraction_fixed_dp"),
      .indent_mods = c(count_fraction = -1L),
      .formats = c("count_fraction_fixed_dp" = jjcsformat_count_fraction),
      nested = FALSE
    ) %>%
    append_topleft("Preferred Term, n (%)")
} else {
  lyt <- lyt %>%
    append_topleft("Preferred Term, n (%)")
}

result <- build_table(lyt, df = adae, alt_counts_df = adsl)

# Post-processing

if (nrow(adae0) > 0) {
  # Post-Processing step to sort by descending count in the Combined
  # Xanomeline High Dose column
  result <- sort_at_path(
    tt = result,
    path = c("root", "AEDECOD"),
    scorefun = jj_complex_scorefun(
      spanningheadercolvar = "colspan_trt",
      colpath = NULL
    )
  )
}

if (nrow(adae0) == 0) {
  # Post-Processing step to remove 'Subjects with' row
  result <- safe_prune_table(
    result,
    prune_func = remove_rows(
      removerowtext = "Subjects with >=1 related non-serious AE"
    )
  )
}

# Retrieve titles and footnotes

result <- set_titles(result, tab_titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid)
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences