TL Catalog
  1. Tables
  2. Vital Signs and Physical Findings
  3. TSFVIT02
  • Introduction

  • Index

  • Tables
    • Adverse Events
      • TSFAE01A
      • TSFAE01B
      • TSFAE02
      • TSFAE02A
      • TSFAE03
      • TSFAE03A
      • TSFAE04
      • TSFAE04A
      • TSFAE05
      • TSFAE05A
      • TSFAE06A
      • TSFAE06B
      • TSFAE07A
      • TSFAE07B
      • TSFAE08
      • TSFAE09
      • TSFAE10
      • TSFAE11
      • TSFAE12
      • TSFAE13
      • TSFAE14
      • TSFAE15
      • TSFAE16
      • TSFAE17A
      • TSFAE17B
      • TSFAE17C
      • TSFAE17D
      • TSFAE19A
      • TSFAE19B
      • TSFAE19C
      • TSFAE19D
      • TSFAE20A
      • TSFAE20B
      • TSFAE20C
      • TSFAE21A
      • TSFAE21B
      • TSFAE21C
      • TSFAE21D
      • TSFAE22A
      • TSFAE22B
      • TSFAE22C
      • TSFAE23A
      • TSFAE23B
      • TSFAE23C
      • TSFAE23D
      • TSFAE24A
      • TSFAE24B
      • TSFAE24C
      • TSFAE24D
      • TSFAE24F
      • TSFDTH01
    • Clinical Laboratory Evaluation
      • TSFLAB01
      • TSFLAB01A
      • TSFLAB02
      • TSFLAB02A
      • TSFLAB02B
      • TSFLAB03
      • TSFLAB03A
      • TSFLAB04A
      • TSFLAB04B
      • TSFLAB05
      • TSFLAB06
      • TSFLAB07
    • Demographic
      • TSIDEM01
      • TSIDEM02
      • TSIMH01
    • Disposition of Subjects
      • TSIDS01
      • TSIDS02
      • TSIDS02A
    • Electrocardiograms
      • TSFECG01
      • TSFECG01A
      • TSFECG02
      • TSFECG03
      • TSFECG04
      • TSFECG05
    • Exposure
      • TSIEX01
      • TSIEX02
      • TSIEX03
      • TSIEX04
      • TSIEX06
      • TSIEX07
      • TSIEX08
      • TSIEX09
      • TSIEX10
      • TSIEX11
    • Pharmacokinetics
      • TPK01A
      • TPK01B
      • TPK02
      • TPK03
    • Prior and Concomitant Therapies
      • TSICM01
      • TSICM02
      • TSICM03
      • TSICM04
      • TSICM05
      • TSICM06
      • TSICM07
      • TSICM08
    • Vital Signs and Physical Findings
      • TSFVIT01
      • TSFVIT01A
      • TSFVIT02
      • TSFVIT03
      • TSFVIT04
      • TSFVIT05
      • TSFVIT06
  • Listings
    • Adverse Events
      • LSFAE01
      • LSFAE02
      • LSFAE03
      • LSFAE04
      • LSFAE05
      • LSFAE06A
      • LSFAE06B
      • LSFDTH01
    • Clinical Laboratory Evaluation
      • LSFLAB01
    • Demographic
      • LSIDEM01
      • LSIDEM02
      • LSIMH01
    • Disposition of Subjects
      • LSIDS01
      • LSIDS02
      • LSIDS03
      • LSIDS04
      • LSIDS05
    • Electrocardiograms
      • LSFECG01
      • LSFECG02
    • Exposure
      • LSIEX01
      • LSIEX02
      • LSIEX03
    • Prior and Concomitant Therapies
      • LSICM01
    • Vital Signs and Physical Findings
      • LSFVIT01
      • LSFVIT02

  • Reproducibility

  • Changelog

On this page

  • Output
  • Edit this page
  • Report an issue
  1. Tables
  2. Vital Signs and Physical Findings
  3. TSFVIT02

TSFVIT02

Subjects With Maximum On-treatment Systolic Blood Pressure by Category of Blood Pressure


Output

  • Preview
Code
# Program Name:              tsfvit02

# Prep environment:

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSFVIT02"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

popfl <- "SAFFL"
trtvar <- "TRT01A"
ctrl_grp <- "Placebo"

selparamcd <- c("SYSBP", "DIABP")

### tsfvit02a
selparamcd <- c("SYSBP")

### tsfvit02b : no code updates needed
# selparamcd <- c("DIABP")

### as in dataset, order is important for later processing
### not automated, hard coded approach for ease of reading
### ideally the datasets already contain the appropriate case, to ensure units are in proper case
sel_param <- c("Systolic Blood Pressure (mmHg)")
sel_param_case <- c("Systolic blood pressure (mmHg)")

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(
    USUBJID,
    all_of(c(popfl, trtvar)),
    SEX_DECODE,
    AGEGR1,
    RACE_DECODE,
    ETHNIC_DECODE
  )

adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs", ctrl_grp))

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)
ref_path <- c("colspan_trt", " ", trtvar, ctrl_grp)

### note: by filter ANL06FL, this table is restricted to On-treatment values, per definition of ANL06FL
### therefor, no need to add ONTRTFL in filter
### if derivation of ANL06FL is not restricted to ONTRTFL records, adding ONTRTFL here will not give the correct answer either
### as mixing worst with other period is not giving the proper selection !!!
filtered_advs <- pharmaverseadamjnj::advs %>%
  filter(PARAMCD %in% selparamcd) %>%
  filter(ANL06FL == "Y") %>%
  select(
    STUDYID,
    USUBJID,
    PARAMCD,
    PARAM,
    AVALCAT1,
    AVALCA1N,
    AVISIT,
    ANL06FL,
    APOBLFL,
    ONTRTFL
  ) %>%
  inner_join(adsl)

filtered_advs$PARAM <- factor(
  as.character(filtered_advs$PARAM),
  levels = sel_param,
  labels = sel_param_case
)

# Process markedly abnormal values from spreadsheet:

### Markedly Abnormal spreadsheet

markedlyabnormal_file <- file.path('../../_data', "markedlyabnormal.xlsx")


markedlyabnormal_sheets <- readxl::excel_sheets(markedlyabnormal_file)

lbmarkedlyabnormal_defs <- readxl::read_excel(
  markedlyabnormal_file,
  sheet = "ADVS"
) %>%
  filter(PARAMCD != "Parameter Code") %>%
  arrange(PARAMCD, VARNAME, ORDER) %>%
  filter(VARNAME == "AVALCAT1") %>%
  filter(PARAMCD %in% selparamcd) %>%
  left_join(., unique(filtered_advs %>% select(PARAMCD, PARAM)))


# code_decode <- getcodelistinfo(df=filtered_advs,
#                                domain="advs",
#                                vars = c("AVALCAT1"),
#                                APT= apt,
#                                adam_meta_loc=am_in,
#                                sdtm_meta_loc=dm_in)
#
#
# code_decode <- code_decode %>%
#   filter(PARAMCD %in% selparamcd) %>%
#   left_join(.,unique(filtered_advs %>% select(PARAMCD,PARAM)))

### create a mapping table for usage in split_fun trim_levels_to_map,
### to ensure only the levels appropriate for the selected parameters are covered

param_map <- lbmarkedlyabnormal_defs %>%
  rename(AVALCAT1 = CRIT) %>%
  ### no factors are allowed in this split_fun map definition
  mutate(PARAM = as.character(PARAM)) %>%
  select(PARAM, AVALCAT1)

# if no code list was defined, not all defined categories might be present on data
# sas2rds conversion might not have added all categories as factor levels - need to do this here
if (
  class(filtered_advs$AVALCAT1) == "character" ||
    !all(unique(param_map$AVALCAT1) %in% levels(filtered_advs$AVALCAT1))
) {
  filtered_advs$AVALCAT1 <- factor(
    as.character(filtered_advs$AVALCAT1),
    levels = unique(param_map$AVALCAT1)
  )
}

# filtered_advs$PARAM <- droplevels(filtered_advs$PARAM)

filtered_advs <- var_relabel(filtered_advs, PARAM = "Blood Pressure")

# Define layout and build table:

extra_args_rr <- list(
  method = "wald",
  denom = "n_df",
  ref_path = ref_path,
  .stats = c("denom", "count_unique_fraction")
)

lyt0 <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(trtvar) %>%
  split_cols_by("rrisk_header", nested = FALSE) %>%
  split_cols_by(
    trtvar,
    labels_var = "rrisk_label",
    split_fun = remove_split_levels(ctrl_grp)
  ) %>%
  split_rows_by(
    "PARAM",
    label_pos = "topleft",
    child_labels = "hidden",
    split_label = "Systolic Blood Pressure (mmHg), n (%)",
    section_div = " ",
    ## ensure only the appropriate levels inside PARAM-AVALCAT1 will be included
    split_fun = trim_levels_to_map(param_map)
  )

# version without explicit denominator (as in shell)
lyt <- lyt0 %>%
  # for testing, it is sometimes convenient to explicitely show the used denominator
  analyze(
    "AVALCAT1",
    a_freq_j,
    extra_args = extra_args_rr,
    show_labels = "hidden",
    indent_mod = 0L
  )


result <- build_table(lyt, filtered_advs, alt_counts_df = adsl)

# Post-Processing:

result <- remove_col_count(result)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "landscape")

TSFVIT02: Subjects With Maximum On-treatment Systolic Blood Pressure by Category of Blood Pressure; Safety Analysis Set (Study jjcs - core)

Active Study Agent

Risk Difference (%) (95% CI)

Xanomeline High Dose

Xanomeline Low Dose

Placebo

Xanomeline High Dose vs Placebo

Xanomeline Low Dose vs Placebo

Systolic Blood Pressure (mmHg), n (%)

N=53

N=73

N=59

N

49

69

55

<90

0

0

4 (7.3%)

-7.3 (-14.1, -0.4)

-7.3 (-14.1, -0.4)

≥90 to 119

27 (55.1%)

23 (33.3%)

27 (49.1%)

6.0 (-13.2, 25.2)

-15.8 (-33.0, 1.5)

≥120 to 139

17 (34.7%)

30 (43.5%)

18 (32.7%)

2.0 (-16.2, 20.2)

10.8 (-6.3, 27.8)

≥140 to 159

5 (10.2%)

12 (17.4%)

6 (10.9%)

-0.7 (-12.5, 11.1)

6.5 (-5.7, 18.6)

≥160 to 179

0

4 (5.8%)

0

0.0 (0.0, 0.0)

5.8 (0.3, 11.3)

≥180

0

0

0

0.0 (0.0, 0.0)

0.0 (0.0, 0.0)

Note: On-treatment is defined as blood pressure values obtained after the first dose and within [30 days] following treatment discontinuation.

Download RTF file

TSFVIT01A
TSFVIT03
Source Code
---
title: TSFVIT02
subtitle: Subjects With Maximum On-treatment Systolic Blood Pressure by Category of Blood Pressure
---

------------------------------------------------------------------------

{{< include ../../_utils/envir_hook.qmd >}}

```{r setup, echo = FALSE, warning = FALSE, message = FALSE}
options(docx.add_datetime = FALSE, tidytlg.add_datetime = FALSE)
envsetup_config_name <- "default"

# Path to the combined config file
envsetup_file_path <- file.path("../..", "envsetup.yml")

Sys.setenv(ENVSETUP_ENVIRON = '')
library(envsetup)
loaded_config <- config::get(config = envsetup_config_name, file = envsetup_file_path)
envsetup::rprofile(loaded_config)


dpscomp <- compound
dpspdr <- paste(protocol,dbrelease,rpteff,sep="__")

aptcomp <- compound
aptpdr <- paste(protocol,dbrelease,rpteff,sep="__")

###### Study specific updates (formerly in envre)

dpscomp <- "standards"
dpspdr <- "jjcs__NULL__jjcs - core"

apt <- FALSE
library(junco)
default_str_map <- rbind(default_str_map, c("&ctcae", "5.0"))

```

## Output

:::: panel-tabset
## {{< fa regular file-lines sm fw >}} Preview

```{r variant1, results='hide', warning = FALSE, message = FALSE}

# Program Name:              tsfvit02

# Prep environment:

library(envsetup)
library(tern)
library(dplyr)
library(rtables)
library(junco)

# Define script level parameters:

tblid <- "TSFVIT02"
fileid <- tblid
titles <- get_titles_from_file(input_path = '../../_data/', tblid)
string_map <- default_str_map

popfl <- "SAFFL"
trtvar <- "TRT01A"
ctrl_grp <- "Placebo"

selparamcd <- c("SYSBP", "DIABP")

### tsfvit02a
selparamcd <- c("SYSBP")

### tsfvit02b : no code updates needed
# selparamcd <- c("DIABP")

### as in dataset, order is important for later processing
### not automated, hard coded approach for ease of reading
### ideally the datasets already contain the appropriate case, to ensure units are in proper case
sel_param <- c("Systolic Blood Pressure (mmHg)")
sel_param_case <- c("Systolic blood pressure (mmHg)")

# Process Data:

adsl <- pharmaverseadamjnj::adsl %>%
  filter(.data[[popfl]] == "Y") %>%
  select(
    USUBJID,
    all_of(c(popfl, trtvar)),
    SEX_DECODE,
    AGEGR1,
    RACE_DECODE,
    ETHNIC_DECODE
  )

adsl$colspan_trt <- factor(
  ifelse(adsl[[trtvar]] == ctrl_grp, " ", "Active Study Agent"),
  levels = c("Active Study Agent", " ")
)

adsl$rrisk_header <- "Risk Difference (%) (95% CI)"
adsl$rrisk_label <- paste(adsl[[trtvar]], paste("vs", ctrl_grp))

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)

colspan_trt_map <- create_colspan_map(
  adsl,
  non_active_grp = ctrl_grp,
  non_active_grp_span_lbl = " ",
  active_grp_span_lbl = "Active Study Agent",
  colspan_var = "colspan_trt",
  trt_var = trtvar
)
ref_path <- c("colspan_trt", " ", trtvar, ctrl_grp)

### note: by filter ANL06FL, this table is restricted to On-treatment values, per definition of ANL06FL
### therefor, no need to add ONTRTFL in filter
### if derivation of ANL06FL is not restricted to ONTRTFL records, adding ONTRTFL here will not give the correct answer either
### as mixing worst with other period is not giving the proper selection !!!
filtered_advs <- pharmaverseadamjnj::advs %>%
  filter(PARAMCD %in% selparamcd) %>%
  filter(ANL06FL == "Y") %>%
  select(
    STUDYID,
    USUBJID,
    PARAMCD,
    PARAM,
    AVALCAT1,
    AVALCA1N,
    AVISIT,
    ANL06FL,
    APOBLFL,
    ONTRTFL
  ) %>%
  inner_join(adsl)

filtered_advs$PARAM <- factor(
  as.character(filtered_advs$PARAM),
  levels = sel_param,
  labels = sel_param_case
)

# Process markedly abnormal values from spreadsheet:

### Markedly Abnormal spreadsheet

markedlyabnormal_file <- file.path('../../_data', "markedlyabnormal.xlsx")


markedlyabnormal_sheets <- readxl::excel_sheets(markedlyabnormal_file)

lbmarkedlyabnormal_defs <- readxl::read_excel(
  markedlyabnormal_file,
  sheet = "ADVS"
) %>%
  filter(PARAMCD != "Parameter Code") %>%
  arrange(PARAMCD, VARNAME, ORDER) %>%
  filter(VARNAME == "AVALCAT1") %>%
  filter(PARAMCD %in% selparamcd) %>%
  left_join(., unique(filtered_advs %>% select(PARAMCD, PARAM)))


# code_decode <- getcodelistinfo(df=filtered_advs,
#                                domain="advs",
#                                vars = c("AVALCAT1"),
#                                APT= apt,
#                                adam_meta_loc=am_in,
#                                sdtm_meta_loc=dm_in)
#
#
# code_decode <- code_decode %>%
#   filter(PARAMCD %in% selparamcd) %>%
#   left_join(.,unique(filtered_advs %>% select(PARAMCD,PARAM)))

### create a mapping table for usage in split_fun trim_levels_to_map,
### to ensure only the levels appropriate for the selected parameters are covered

param_map <- lbmarkedlyabnormal_defs %>%
  rename(AVALCAT1 = CRIT) %>%
  ### no factors are allowed in this split_fun map definition
  mutate(PARAM = as.character(PARAM)) %>%
  select(PARAM, AVALCAT1)

# if no code list was defined, not all defined categories might be present on data
# sas2rds conversion might not have added all categories as factor levels - need to do this here
if (
  class(filtered_advs$AVALCAT1) == "character" ||
    !all(unique(param_map$AVALCAT1) %in% levels(filtered_advs$AVALCAT1))
) {
  filtered_advs$AVALCAT1 <- factor(
    as.character(filtered_advs$AVALCAT1),
    levels = unique(param_map$AVALCAT1)
  )
}

# filtered_advs$PARAM <- droplevels(filtered_advs$PARAM)

filtered_advs <- var_relabel(filtered_advs, PARAM = "Blood Pressure")

# Define layout and build table:

extra_args_rr <- list(
  method = "wald",
  denom = "n_df",
  ref_path = ref_path,
  .stats = c("denom", "count_unique_fraction")
)

lyt0 <- basic_table(
  show_colcounts = TRUE,
  colcount_format = "N=xx"
) %>%
  split_cols_by(
    "colspan_trt",
    split_fun = trim_levels_to_map(map = colspan_trt_map)
  ) %>%
  split_cols_by(trtvar) %>%
  split_cols_by("rrisk_header", nested = FALSE) %>%
  split_cols_by(
    trtvar,
    labels_var = "rrisk_label",
    split_fun = remove_split_levels(ctrl_grp)
  ) %>%
  split_rows_by(
    "PARAM",
    label_pos = "topleft",
    child_labels = "hidden",
    split_label = "Systolic Blood Pressure (mmHg), n (%)",
    section_div = " ",
    ## ensure only the appropriate levels inside PARAM-AVALCAT1 will be included
    split_fun = trim_levels_to_map(param_map)
  )

# version without explicit denominator (as in shell)
lyt <- lyt0 %>%
  # for testing, it is sometimes convenient to explicitely show the used denominator
  analyze(
    "AVALCAT1",
    a_freq_j,
    extra_args = extra_args_rr,
    show_labels = "hidden",
    indent_mod = 0L
  )


result <- build_table(lyt, filtered_advs, alt_counts_df = adsl)

# Post-Processing:

result <- remove_col_count(result)

# Add titles and footnotes:

result <- set_titles(result, titles)

# Convert to tbl file and output table

tt_to_tlgrtf(string_map = string_map, tt = result, file = fileid, orientation = "landscape")
```
```{r result1, echo=FALSE, message=FALSE, warning=FALSE, test = list(result_v1 = "result")}
tt_to_flextable_j(result, tblid, string_map = string_map) 
```

[Download RTF file](`r paste0(tolower(tblid), '.rtf')`)
::::

Made with ❤️ by the J&J Team

  • Edit this page
  • Report an issue
Cookie Preferences